دانلود مقاله بررسی روش‌های مختلف آشکارسازی چند کاربره با word

برای دریافت پروژه اینجا کلیک کنید

 دانلود مقاله بررسی روش‌های مختلف آشکارسازی چند کاربره با word دارای 43 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد دانلود مقاله بررسی روش‌های مختلف آشکارسازی چند کاربره با word  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

بخشی از فهرست مطالب پروژه دانلود مقاله بررسی روش‌های مختلف آشکارسازی چند کاربره با word

فصل اول: مقدمه
1-1- مدل سیستم
1-2- مختصری از فصل‌های دیگر  
فصل دوم:آشکارساز متعارف یا بانک فیلتری
2-1- بانک فیلترمنطبق(روش متعارف)    
2-2- محاسبه احتمال خطای حالت   
دو کاربره ازروش اول
2-3- محاسبه احتمال خطای حالت   
دو کاربره ازروش دوم
2-4- آشکارساز بهینه خطی   
فصل سوم: آشکارساز دکرلاتور
3-1- عملکردکلی دکرلاتور
3-2- شبیه سازی و رابطه ی احتمال خطا   
فصل چهارم: آشکارسازکمترین میانگین مربعات خطا(mmse)
4-1- عملکرد کلی MMSE
4-2- مقایسه آشکارسازهای خطی
فصل پنجم: برخی آشکارسازهای غیرخطی
5-1- حذف موفق
5-2- آشکارسازی چندمرحله ای
5-2-1- روش متعارف مرحله اصلی
5-2-2- آشکارساز مرحله اصلی دکرلاتور
5-3- جمع بندی و نتیجه گیری نهایی
مراجع

1-1مدل سیستم

در این پروژه فرض بر آن است که بدون آسیب دیدن کلیت موضوع K کاربر وجود دارد که هر کدام ازBPSK برای ارسال پیام استفاده می‌کنند و دامنه‌ی پیام ارسالی همه‌ی کاربران نیز یکسان فرض می‌شود، در این صورت سیگنال دریافتی در گیرنده عبارت است از

(-11)                                      y(t) =  

که در آن Sk شکل موج ارسالی توسط kامین کاربربا انرژی واحد برای BPSK وبرای بیت ریت T، bk بیت ارسالی kامین کاربرکه یا1ویا 1- است وAkدامنه ی دریافتی kامین کاربر می‌باشند.  n(t)نیز نویز سفید گاوسی با PSD=N0 می‌باشد. اگر ضرب داخلی (cross-correlation) دو شکل موج ارسالی را با نشان دهیم، به شکل زیر تعریف می‌شود

ij = <SiSj> =                                    (2-1)

که از روی آن تعریفی برای ماتریس  R(cross-correlation) داریم که در زیر آمده است

ij} =                       (3-1)R = {

که در آن ماتریس R متقارن و مثبت می‌باشد

1-2مختصری از فصل‌های دیگر

در ادامه در فصل‌های بعد با برخی آشکارسازهای خطی از جمله روش متعارف، روش موسوم به Decorrelating detector(دکرلاتور)، بهینه خطی وکمترین مربعات خطا همراه با روابط وبیان ویژگی‌ها تفاوت‌های آن‌ها با یکدیگر آشنا خواهیم شد و در آخرین فصل چند روش غیر خطی بررسی می شوند و در ادامه فصل آخر نتیجه گیری و جمع بندی خواهیم کرد

  فصل دوم

   آشکارساز متعارف یا بانک فیلتری

 

در این فصل ساده‌ترین راهکار برای آشکارسازی سیگنال‌های cdma یعنی فیلتر منطبق یا روش متعارف همراه با عملکرد آن در کانال‌های چند کاربره با این فرض که با این روش به عنوان آشکارساز بهینه در مخابره‌ی تک کاربره آشنایی کامل وجود دارد بررسی می‌کنیم رابطه‌ی احتمال خطا و شبیه سازی‌ها همچنین برخی ایرادهای آن آورده شده است

2-1- بانک فیلترمنطبق(روش متعارف):

در سیستم ارتباطی تک کاربره ی دیجیتال معمولی فیلتر منطبق برای آشکارسازی سیگنال با روش‌های مؤثر ریاضی به کار می‌رود. ولی در حالت چند کاربره باید از یک مجموعه‌ی فیلتر منطبق که هر فیلتربرای یکی از شکل موج‌های کاربران استفاده می‌شود به کار رود که در شکل زیر ساختار آن آورده شده است و در آشکارسازی چندکاربره به آن روش متعارف گفته می شود که در این روش باید در مورد شکل موج مورد استفاده هر کاربر اطلاع کافی داشته باشیم

خروجی kامین فیلترمنطبق از عبارت زیر نتیجه می‌شود

yk  =                                           (1-2)

که اگر بجای y(t) از رابطه‌ی (-11) قرار دهیم به عبارت زیر می‌رسیم

yk  =  jK= 1 Aj bj jk + nk                                                        (2-2)

که در آن

nk  =                                     (3-2)

و   1 = ,kk  پس داریم

                         (4-2) yk = Ak bk +  kj Aj bj jk + nk

و واریانس نویز خروجی فیلتر منطبق از محاسبه‌ی امید ریاضی  برابر N0 محاسبه می شود

و به طور مشابه کواریانس نویز  * jk N0محاسبه می‌شود. و ما می‌توانیم ماتریس کواریانس نویز را به صورت زیر تعریف کنیم

N0 R                                                    (5-2) =       E[nnT ]

که n=[n1 ,n2,…,nk] و nT ترانهاده آن می‌باشد

اگر رابطه ی(2-2)  را برای هر k کاربر نوشته و مرتب کنیم به مدل ماتریسی زیر دست می‌یابیم

Y = R A b + n                                                  (6-2)

که در آن به ترتیب

Y=  وA=  وb=  و =n  و

R=  می باشند

برای مثال برای سیستم دو کاربره وقتی که اطلاعات کاربراول برای ما مطلوب و کاربر دوم تداخلگر محسوب می‌شود مدل سیستم به شکل زیر خلاصه می شود

y1 = A1 b1 + b2+ n1                                                                  (7-2)

که در آن

                                                           (8-2) = A2 12

و اگر با برنامه‌ی MATLAB به صورت آماری وبا در نظر گرفتن سیگنال خروجی فیلتر به صورت

وبا توجه به اینکه خروجی فیلتر منطبق اول از رابطه‌ی

= sign (y1)                                                   (9-2)

محاسبه می‌شود، با شمارش تعداد بر آوردهای خطا و محاسبه‌ی احتمال خطا شکل زیر که نمودار احتمال خطا بر حسب  سیگنال به نویز A12/N0= SNR=A12/22می باشد حاصل شده است (I=4 و نویز گاوسی در نظر گرفته شده است)

2-2-محاسبه احتمال خطای حالت دو کاربره از روش اول:

برای دریافت پروژه اینجا کلیک کنید

دانلود مقاله کاربردهای لیزر در مخابرات با word

برای دریافت پروژه اینجا کلیک کنید

 دانلود مقاله کاربردهای لیزر در مخابرات با word دارای 58 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد دانلود مقاله کاربردهای لیزر در مخابرات با word  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

بخشی از فهرست مطالب پروژه دانلود مقاله کاربردهای لیزر در مخابرات با word

چکیده
فصل اول (مقدمه)
1-1- مقدمه  
فصل دوم (شناخت لیزر)
1-2- معرفی  
2-2- انواع لیزر  
3-2- انتخاب لیزر  
4-2- طول عمر لیزر نیمه هادی  
فصل سوم (لیزر VCSEL)
1-3- MICRO – OPTICS  
2-3- قطعات MICRO غیر فعال برای VCSEL  
3-3- استفاده تکنولوژی DIRECT  INTEGRATION برای PASSIVE  MICRO – OPTICS روی سطح VCSEL  
فصل چهارم (استفاده از VCSEL قابل تنظیم برای سیستم‌های با فاصله‌ی کم و به هم متصل)
1-4- عملکرد سیستم  
2-4- VCSEL با طول موج بلند  
3-4- VCSEL قابل تنظیم  
4-4- VCSEL غیر قابل تنظیم سرعت بالا  
5-4- VCSEL با طول موج کوتاه  
6-4- ویژگی‌های VCSEL با طول موج کوتاه  
7-4- VCSEL با طول موج بلند  
فصل پنجم (کاربرد شبکه‌های عصبی لیزر در سیستم‌های مخابراتی)
1-5- شبکه‌های عصبی  
2-5- یک سیستم عصبی تغییر اطلاعات  
3-5- یک بسته عصبی نوری تغییر دهنده  
ABSTRACT  
REFERENCES  

بخشی از منابع و مراجع پروژه دانلود مقاله کاربردهای لیزر در مخابرات با word

1 A. J. Liu, W. Chen, H. W. Qu et al., “Single-mode holey vertical- cavity surface-emitting laser with ultra-narrow beam divergence,” Laser Physics Letters, vol. 7, no. 3, pp. 213–217, 2010

2 A. K. Nallani, T. Chen, D. J. Hayes, W. S. Che, and J. B. Lee, “A method for improved VCSEL packaging using MEMS and ink-jet technologies,” Journal of Lightwave Technology, vol. 24, no. 3, pp. 1504–1512, 2006

3 A. Kroner, I. Kardosh, F. Rinaldi, and R. Michalzik, “Towards VCSEL-based integrated optical traps for biomedical applications,” Electronics Letters, vol. 42, no. 2, pp. 93–94, 2006

4 A. Liu, M. Xing, H. Qu, W. Chen, W. Zhou, and W. Zheng, “Reduced divergence angle of photonic crystal vertical-cavity surface-emitting laser,” Applied Physics Letters, vol. 94, no. 19, Article ID 191105,

5. A. Nallani, T. Chen, J. B. Lee, D. Hayes, and D.Wallace, “Wafer level optoelectronic device packaging using MEMS,” in Smart Sensors, Actuators, and MEMS II, vol. 5836 of Proceedings of SPIE, pp. 116–127, May

6. A. Suzuki, Y. Wakazono, S. Suzuki et al., “High optical coupling efficiency using 45-ended fibre for low-height and lowcost optical interconnect modules,” Electronics Letters, vol. 44, no. 12, pp. 724–725, 2008

7 A. Tuantranont, V. M. Bright, J. Zhang, W. Zhang, J. A. Neff, and Y. C. Lee, “Optical beam steering using MEMS-controllable microlens array,” Sensors and Actuators A, vol. 90, no.3, pp. 363–372, 2001

8 Artundo, I. et al., ”Selective optical broadcast component for reconfigurable multiprocessor interconnects,” IEEE Journal of Selected Topics in Quantum Electronics, vol.12, no.4, pp.828-837, July-Aug

9. B. K¨ogel et al., ”Long-wavelength MEMS tunable vertical-cavity surface-emitting lasers with high sidemode suppression” 2006 J. Opt. A: Pure Appl. Opt. 8 S

10. B. K¨ogel et al., ”Tuning Dynamics of Micromachined Surface-Emitting Lasers with Broadband Long- Wavelength Coverage,” Photonics in Switching, 2007 , vol., no., pp.111-112, 19-22 Aug

11. B. K¨ogel, A. Abbaszadehbanaeiyan, P.Westbergh et al., “Integrated tunable VCSELs with simpleMEMS technology,” in Proceedings of the 22nd IEEE International Semiconductor Laser Conference (ISLC ’10), pp. 26–30, 2010

12 B. K¨ogel. et al., ”Integrated Tunable VCSELs With Simple MEMS Technology” IEEE Semiconductor Laser Conference 2010,ISLC

13. B. Reig, T. Camps, D. Bourrier, E. Daran, C. Vergnen`egre, and V. Bardinal, “Design of active lens for VCSEL collimation,” in Advances in Optical Technologies 11 Micro-Optics 2010, vol. 7716 of Proceedings of SPIE, p. 771620,

14. C. Debaes,M. Vervaeke, V. Baukens et al., “Low-costmicrooptical modules for MCM level optical interconnections,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 9, no. 2, pp. 518–530, 2003

15 C. Gimkiewicz, M. Moser, S. Obi et al., “Wafer-scale replication and testing of micro-optical components for VCSELs,” in Micro-Optics, VCSELs, and Photonic Interconnects, vol. 5453 of Proceedings of SPIE, pp. 13–26, April

16. C. Gorecki, L. Nieradko, S. Bargiel et al., “On-chip scanning confocal microscope with 3D MEMS scanner and VCSEL feedback detection,” in Proceedings of the 4th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS ’07), pp. 2561–2564, June

17. C. H. Hou, C. C. Chen, B. J. Pong et al., “GaN-based stacked micro-optics system,” Applied Optics, vol. 45, no. 11, pp. 2396– 2398, 2006

18 C. J. Chang-Hasnain, “Tunable VCSEL,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 6, no. 6, pp. 978– 987, 2000

19 C. Levallois, V. Bardinal, T. Camps et al., “VCSEL collimation using self-aligned integrated polymer microlenses,” in Micro- Optics 2008, vol. 6992 of Proceedings of SPIE, p. 69920W, April

20. C. Reardon, A. Di Falco, K. Welna, and T. Krauss, “Integrated polymer microprisms for free space optical beam deflecting,” Optics Express, vol. 17, no. 5, pp. 3424–3428, 2009

21 C. Vergnen`egre, T. Camps, V. Bardinal, C. Bringer, C. Fontaine, and A.Munoz-Yag¨ue, “Integrated optical detection subsystem for functional genomic analysis biosensor,” in Photonics Applications in Biosensing and Imaging, vol. 5969 of Proceedings of SPIE, pp. 596912.1–59691210, 2005

22 Chang-Hasnain, C.J., ”15-16 m VCSEL for metro WDM  applications,” 2001 IPRM. IEEE International Conference On Indium Phosphide and Related Materials, vol., no., pp.17-18,

23. Chilwell, J.;Hodgkinson, I. ”Thin-film field-transfer matrix method of planar multilayer waveguides and reflection from prism-loaded waveguides”, J. Opt. Soc. Am. A1 (1984) 742-

24. D. F. Siriani and K. D. Choquette, “Electronically controlled two-dimensional steering of in-phase coherently coupled vertical-cavity laser arrays,” IEEE Photonics Technology Letters, vol. 23, no. 3, pp. 167–169, 2011

25 D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nature Photonics, vol. 4, no. 7, pp. 466–470, 2010

26 D. Heinis, C. Gorecki, C. Bringer et al., “Miniaturized scanning near-field microscope sensor based on optical feedback inside a single-mode oxide-confined vertical-cavity surfaceemitting laser,” Japanese Journal of Applied Physics 2, vol. 42, no. 12 A, pp. L1469–L1471,

27. D. J. Hayes, M. E. Grove, D. B. Wallace, T. Chen, and W. R. Cox, “Ink-jet printing in the manufacturing of electronics, photonics, and displays,” in Nanoscale Optics and Applications, vol. 4809 of Proceedings of SPIE, pp. 94–99, July

28. D. M. Hartmann, S. C. Esener, and O. Kibar, “Precision fabrication of polymer microlens arrays,” United States patent 7.771, 630 B2,

29. D. W. Kim, T. W. Lee, M. H. Cho, and H. H. Park, “Highefficiency and stable optical transmitter using VCSEL-directbonded connector for optical interconnection,” Optics Express, vol. 15, no. 24, pp. 15767–15775, 200710 Advances in Optical Technologies

30. Debernardi, P. et al., ”Modal Properties of Long-Wavelength Tunable MEMS-VCSELsWith Curved Mirrors: Comparison of Experiment and Modeling,” IEEE Journal of Quantum Electronics, vol.44, no.4, pp.391-399, April

31. Dissertation, Markus Maute, Walter Schottky Institut, Technische Universit¨at M¨unchen, ”Mikromechanisch abstimmbare Laser-Dioden mit Vertikalresonator”, Vol.81, ISBN 3-932749-81-

32. E. Bosman, G. Van Steenberge, I. Milenkov et al., “Fully flexible optoelectronic foil,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 16, no. 5, Article ID 5404348, pp. 1355–1362, 2010

33 E. C. Mos, J. J. H. B. Schleipen, and H. de Waardt, “Optical mode neural network by use of the nonlinear response of a laser diode to external optical feedback,” Appl. Opt. 36, 665443663,1997.

34. E. M. Strzelecka, D. A. Louderback, B. J. Thibeault, G. B. Thompson, K. Bertilsson, and L. A. Coldren, “Parallel freespace optical interconnect based on arrays of vertical-cavity lasers and detectors with monolithic microlenses,” AppliedOptics, vol. 37, no. 14, pp. 2811–2821, 1998

35 E. Thrush, O. Levi, W. Ha et al., “Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing,” IEEE Journal of Quantum Electronics, vol. 40, no. 5, pp. 491–498, 2004

36 G. Kim, X. Han, and R. T. Chen, “Crosstalk and interconnection distance considerations for board-to-board optical interconnects using 2-D VCSEL and microlens array,” IEEE Photonics Technology Letters, vol. 12, no. 6, pp. 743–745, 2000

37 H. A. Davani et al., ”Widely tunable high-speed bulk-micromachined short-wavelength MEMS-VCSEL”IEEE Semiconductor Laser Conference 2010,ISLC 2010, page 14-

38. H. L. Chen, D. Francis, T. Nguyen, W. Yuen, G. Li, and C. Chang-Hasnain, “Collimating diode laser beams from a largearea VCSEL-array using microlens array,” IEEE Photonics Technology Letters, vol. 11, no. 5, pp. 506–508, 1999

39 H. Ottevaere, R. Cox, H. P. Herzig et al., “Comparing glass and plastic refractive microlenses fabricated with different technologies,” Journal of Optics A, vol. 8, no. 7, pp. S407–S429,

40. H. P. Herzig,Micro-Optics, Elements, Systems and Applications, Taylor and Francis, London, UK,

41. H. S. Lee, I. Park, K. S. Jeon, and E. H. Lee, “Fabrication of micro-lenses for optical interconnection using micro ink-jetting technique,” Microelectronic Engineering, vol. 87, no. 5-8, pp. 1447–1450, 2010

42 H. Zappe, Fundamentals of Micro-Optics, Cambridge University Press,

43.  Hofmann, W. et al., ”155-m VCSEL Arrays for High-Bandwidth WDM-PONs,” Photonics Technology Letters, IEEE , vol.20, no.4, pp.291-293, Feb.15,

44. I. S. Chung, P. Debernardi, Y. T. Lee, and J. Mrk, “Transverse- mode-selectable microlens verticalcavity surface-emitting laser,” Optics Express, vol. 18, no. 5, pp. 4138–4147, 2010

45  J. Ingenhoff; , ”Athermal AWG devices for WDM-PON architectures,” Lasers and Electro-Optics Society, 2006. LEOS 2006. 19th Annual Meeting of the IEEE , vol., no., pp.26-27, Oct

46. J. K. Kim, D. U. Kim, B. H. Lee, and K. Oh, “Arrayed multimode fiber to VCSEL coupling for short reach communications using hybrid polymer-fiber lens,” IEEE Photonics Technology Letters, vol. 19, no. 13, pp. 951–953, 2007

47 J. Perchoux and T. Bosch, “Multimode VCSELs for self-mixing velocity measurements,” in Proceedings of the 6th IEEE Conference on SENSORS, pp. 419–422, October

48. J. W. Goodman, A. R. Dias, and L. M. Woody, “Fully parallel, high-speed incoherent optical method for performing discrete Fourier transforms,” Opt. Lett. 2, 1-3, 1978.

49. Jatta, S. et al., ”Bulk-Micromachined VCSEL At 1.55 m With 76-nm Single-Mode Continuous Tuning Range,” Photonics Technology Letters, IEEE , vol.21, no.24, pp.1822-1824, Dec.15,

50. K. Goto, Y. J. Kim, S. Mitsugi, K. Suzuki, K. Kurihara, and T. Horibe, “Microoptical two-dimensional devices for the optical memory head of an ultrahigh data transfer rate and density sytem using a vertical cavity surface emitting laser (VCSEL) array,” Japanese Journal of Applied Physics 1, vol. 41, no. 7 B, pp. 4835–4840, 2002

51K. Hedsten, J.Melin, J. Bengtsson et al., “MEMS-based VCSEL beam steering using replicated polymer diffractive lens,” Sensors and Actuators A, vol. 142, no. 1, pp. 336–345, 2008

52 K. Iga, “Vertical-cavity surface-emitting laser: its conception and evolution,” Japanese Journal of Applied Physics, vol. 47, no. 1, pp. 1–10, 2008

53 K. Ishikawa, J. Zhang, A. Tuantranont, V. M. Bright, and Y. C.Lee, “An integrated micro-optical system for VCSEL-to-fiber active  alignment,” Sensors and Actuators A, vol. 103, no. 1-2, pp. 109–115, 2003

54 K. Petermann,”Laser diode modulation and noise,” in Advances in Optoelectronics T. Okoshi Ed., (Kluwer Academic, Dordrecht, The Netherlands, 1991).

55. K. Rastani, M. Orenstein, E. Kapon, and A. C. Von Lehmen, “Integration of planar Fresnel microlenses with vertical-cavity surface-emitting laser arrays,” Optics Letters, pp. 919–921, 1991

56 K. S. Chang, Y. M. Song, and Y. T. Lee, “Microlens fabrication by selective oxidation of composition-graded digital alloy AlGaAs,” IEEE Photonics Technology Letters, vol. 18, no. 1, pp. 121–123, 2006

57 K. Y. Hung, H. T. Hu, and F. G. Tseng, “Application of 3D glycerol-compensated inclined-exposure technology to an integrated optical pick-up head,” Journal of Micromechanics and Microengineering, vol. 14, no. 7, pp. 975–983, 2004

58 L. A. Coldren, S.W. Corzine, ”Diode Lasers and Photonic Integrated Circuits”, John Wiley & Sons, Inc., New York,

59. L. Chrostowski, “Optical gratings: nano-engineered lenses,” Nature Photonics, vol. 4, no. 7, pp. 413–415,

60 L. Fan, M. C. Wu, H. C. Lee, and P. Grodzinski, “Dynamic beam switching of vertical-cavity surface-emitting lasers with integrated optical beam routers,” IEEE Photonics Technology Letters, vol. 9, no. 4, pp. 505–507, 1997

61  L. G. Kazovsky et al., ”Next-generation optical access networks”, J. Lightwave Technol., vol. 25, no. 11, pp. 3428-3442, Nov

62. L. M. Lechuga, J. Tamayo, M. A´ lvarez et al., “A highly sensitive microsystem based on nanomechanical biosensors for genomics applications,” Sensors and Actuators B, vol. 118, no. 1-2,pp. 2–10, 2006

63 M. C. Wu, L.-Y. Lin, S.-S. Lee, and K. S. J. Pister, “Micromachined free-space integratedmicro-optics,” Sensors and Actuators A, vol. 50, no. 1-2, pp. 127–134, 1995

64 M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “Single mode high-contrast subwavelength grating vertical cavity surface emitting lasers,” Applied Physics Letters, vol. 92, no. 17, Article ID 171108,

65. M. M¨uller et al., IEEE PTL, 21, pp . 1615-1617,

66. M. Maute et al., ”MEMS Tunable 1.55-m VCSEL With Extended Tuning Range Incorporating a Buried Tunnel Junction”, IEEE Photonics Technology Letters, vol. 18(5), pp. 688-690,

67. M. Maute, F. Riemenschneider, G. B¨ohm et al., “Micromechanically tunable long wavelength VCSEL with buried tunnel junction,” Electronics Letters, vol. 40, no. 7, pp. 430–431, 2004

68 M.-C. Amann and M. Ortsiefer, ”Long-wavelength (1.3m) InGaAlAs-InP vertical-cavity surface-emitting lasers for applications in optical communications and sensing”, phys. stat. sol. (a) 203 (14),pp. 3538-3544,

69. N. Laurand, C. L. Lee, E. Gu, J. E. Hastie, S. Calvez, and M. D. Dawson, “Microlensed microchip VECSEL,” Optics Express,vol. 15, no. 15, pp. 9341–9346, 2007

70 O. Akanbi, ”Bi-directional dense wavelength division multiplexed systems for broadband access networks”, Ph.D. dissertation, School of Electrical and Computer Engineering, Georgia Institute of Technology,

71. O. Blum, S. P. Kilcoyne, M. E. Warren et al., “Vertical-cavity surface-emitting lasers with integrated refractivemicrolenses,” Electronics Letters, vol. 31, no. 1, pp. 44–45, 1995

72 O. Castany, L. Dupont, A. Shuaib, J. P. Gauthier, C. Levallois, and C. Paranthoen, “Tunable semiconductor vertical-cavity surface-emitting laser with an intracavity liquid crystal layer,” Applied Physics Letters, vol. 98, no. 16, pp. 161105-1–161105-3, 2011

73 O. Soppera, C. Turck, and D. J. Lougnot, “Fabrication of micro-optical devices by self-guiding photopolymerization in the near IR,” Optics Letters, vol. 34, no. 4, pp. 461–463, 2009

74  Patel, R.R. et al., ”Multiwavelength parallel optical interconnects for massively parallel processing,” IEEE Journal of Selected Topics in Quantum Electronics, vol.9, no.2, pp. 657- 666, March-April

75. Pressrelease from LG Ericsson:”LG-Nortel Demonstrates Full WDM-PON Ecosystem at FTTH Council Europe 2010”, 2010-02-24

76 R.Michalzik, A. Kroner, and F. Rinaldi, “VCSEL-based optical trapping for microparticle manipulation,” in Vertical-Cavity Surface-Emitting Lasers XIII, K. D. Choquette and C. Lei, Eds.,vol. 7229 of Proceedings of SPIE, pp. 722908-1–722908-13, 2009

77 S. Eitel, S. J. Fancey, H. P. Gauggel, K. H. Gulden,W. B¨achtold, and M. R. Taghizadeh, “Highly uniform vertical-cavity surface- emitting lasers integrated with microlens arrays,” IEEE Photonics Technology Letters, vol. 12, no. 5, pp. 459–461, 2000

78S. H. Park, Y. Park, H. Kim et al., “Microlensed vertical-cavity surface-emitting laser for stable single fundamental mode operation,” Applied Physics Letters, vol. 80, no. 2, p. 183,

79. S. Healy et al., IEEE J. of Quantum Electronics, Vol. 46, No. 4, pp. 506-512, April

80.S. Heisig, O. Rudow, and E. Oesterschulze, “Scanning nearfield opticalmicroscopy in the near-infrared region using light emitting cantilever probes,” Applied Physics Letters, vol. 77, no.8, pp. 1071–1073, 2000

81 S. S. Lee, L. Y. Lin, K. S. J. Pister, M. C. Wu, H. C. Lee, and P. Grodzinski, “Passively aligned hybrid integration of 8 × 1 micromachined micro-Fresnel lens arrays and 8 × 1 verticalcavity surface-emitting laser arrays for free-space optical interconnect,” IEEE Photonics Technology Letters, vol. 7, no. 9, pp.1031–1033, 1995

82T. Ouchi, A. Imada, T. Sato, and H. Sakata, “Direct coupled packaging of plastic optical fibers on vertical-cavity surfaceemitting lasers with patterned polymer guide holes,” Japanese Journal of Applied Physics A, vol. 41, no. 7 B, pp. 4813–4816, 2002

83 Tayebati, P. et al., ”Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode,” Photonics Technology Letters, IEEE , vol.10, no.12, pp.1679-1681, Dec

84.Tobias Gr¨undl et al., ”High-Speed and HighPower Vertical-Cavity Surface-Emitting Lasers based on InP suitable for Telecommunication and Gas Sensing”, SPIE Remote Sensing 2010, Nr: 7828-

85.U. A. Gracias, N. Tokranova, and J. Castracane, “SU8-based static diffractive optical elements: wafer-level integration with VCSEL arrays,” in Photonics Packaging, Integration, and Interconnects VIII, vol. 6899 of Proceedings of SPIE, p. 68990J, January

86.V. Bardinal, B. Reig, T. Camps et al., “A microtip self-written on a vertical-cavity surface-emitting laser by photopolymerization,” Applied Physics Letters, vol. 96, no. 5, Article ID 051114,

87.V. Bardinal, B. Reig, T. Camps et al., “Spotted custom lenses to tailor the divergence of vertical-cavity surface-emitting lasers,” IEEE Photonics Technology Letters, vol. 22, no. 21, Article ID 5560728, pp. 1592–1594, 2010

88 W. H. Cheng et al., ”Spectral characteristics for a fiber grating external cavity laser,” Optical and Quantum Electronics, vol.32, no.3, pp. 339-348, March

89.Y. Fu, “Integration of microdiffractive lens with continuous relief with vertical-cavity surface-emitting lasers using focused ion beam direct milling,” IEEE Photonics Technology Letters, vol. 13, no. 5, pp. 424–426, 2001

90Y. Ishii, S. Koike, Y. Arai, and Y. Ando, “Hybrid integration of polymer microlens with VCSEL using drop-on-demand technique,”in Optoelectronic Interconnects VII; Photonics Packaging and Integration II, vol. 3952 of Proceedings of SPIE, pp. 364– 374, January

91. Z.Wang, Y. Ning, Y. Zhang et al., “High power and good beam quality of two-dimensional VCSEL array with integrated GaAs microlens array,” Optics Express, vol. 18, no. 23, pp. 23900– 23905, 2010

1-1- مقدمه

در این تحقیق هدف ما بررسی دیود لیزری VCSEL و شبکه‏های LNN می‏باشد

اگرچه وارد شدن به تکنولوژی‏های ساخت و تنظیم اشعه‏های تشعشع شده از سطح یک دیود لیزر نیاز به تخصص‏های ویژه در این زمینه دارد ولی در این تحقیق به طور مختصری نظری به این تکنولوژی‏ها داشته‏ایم و روش‏های تنظیم اشعه‏ها با دیورژانس‌های موردنظر و انتخاب مناسب‏ترین صفحه و لنز برای تمرکز اشعه و منظم کردن پرتوها ارائه شده است. در فصل سوم یک شرح کوتاهی از قطعات نوری بسیار کوچک (microoptic) در دو حالت Passive و active بیان شده است که برای جبران انحراف اشعه و طی آزمایشات انجام شده انتخاب شده‏اند. در فصل چهارم یک VCSEL قابل تنظیم در سیستم‏های مخابراتی مدّ نظر است که به شبکه‏های نوری مثل PON به جای روش‏های قدیمی ارسال داده‏ها روی آورده شده است و به این دلیل VCSEL قابل تنظیم است که باید برای طول موج‏های مختلف وقتی عمل انتقال لیزر با شکست روبه‏رو می‏شود و نیاز به جایگزینی دارند فوراً جایگزین فراهم کند

در فصل پنجم به کاربر و لیزر در شبکه‏های عصبی یا LNN می‏پردازیم و روش کار این شبکه‏ها برای کاهش تلفات نوری در طول موج‏های مختلف ارایه شده است و بیشتر روش‏های کاری توسط شکل‏های ارایه شده تفهیم شده است

       1-2- معرفی

در حالت کلی امروزه تکنولوژی به سمت استفاده از لیزر روی آورده است و این به دلیل مزیت‏هایی است که لیزر نسبت به سایر فرکانس‏ها دارد مثلاً می‏توان به ارتباطات ماهواره‏ای لیزر نظری داشت و مزیت‏های لیزر را نسبت به سایر فرکانس‏ها در نظر گرفت به همین دلیل در این تحقیق ما نظر خود را روی گونه‏ی خاصی از لیزر به نام دیود لیزری VCSELو ساختار آن متمرکز کرده‏ایم

در ارتباطات ماهواره‏ای در فرکانس‏های بسیار بالا دامنه‏ای حدود هفت تا هشت برابر بیشتر از سیستم‏‏های فرکانسی رادیویی (RF) دارد که چهار مزیت ایجاد می‏نماید: پهنای باند وسیعتر، زاویه‏های انحراف شعاع کوچکتر، آنتن‏های کوچکتر و نواحی جدید طیف قابل دستیابی

پهنای باند، زوایای انحراف شعاع و سایز آنتن همگی وابسته به طول موج هستند. طول موج‏های RF یا مایکروویو رنج صدها متر تا کمتر از یک سانتی‏متر را می‏پوشانند در حالی که فرستنده‏های لیزری مناسب ارتباطات ماهواره‏ای از کمتر از یک میکرومتر تا 10 میکرومتر را می‏پوشانند. به طور خاص مقایسه بین یک سیستم ارتباطی cm 3 و یک سیستم لیزر µm 1 را در نظر بگیرید. زاویه انحراف شعاع فرستاده شده به طور معکوس با قطر روزنه و به طور مستقیم با طول موج تغییر می‏کند. مقایسه طول لیزر 6-10×1 با مایکروویو 2-10×3 و فرض یک آنتن m 3 برای حالت میکروویو و یک آنتن cm 10 برای حالت لیزر، نسبت زاویه 106 را می‏دهد. اگر المان‏های دیگر دو سیستم اجرایی نیز معادل باشند یک میلیونیم توان حالت میکروویو در حالت لیزر نیاز می‏باشد

هم‏چنین در حالت لیزر زوایای انحراف شعاع به میکرو رادیان تقلیل می‏یابد

مزیت مهم و منحصر به فرد فرستنده‏های لیزری، پالس‏های قابل دستیابی بسیار باریک و توان بالایی است که نرخ‏های بالای دیتا را ایجاد می‏کنند. نرخ‏های دیتا می‏تواند در حد چندین گیگابایت بر ثانیه باشد

برای مثال در 5 گیگابایت بر ثانیه حدود یک میلیون کانال تلفن قابل استفاده است. در حال حاضر ارتباطات لیزری (Lasercom) نقش محوری در ارتباطات فضایی دارند

2-2- انواع لیزر

چهار منبع لیزر عبارتند از لیزرهای دیودی ALGaAs ، Nd: YAG پمپ شده توسط ALGaAs ، Nd: YAG دوبل پمپ شده توسط ALGaAs و لیزر Co2. دیودهای ALGaAs ، Nd: YAG پمپ شده توسط ALGaAs دو منبع اصلی و عملی لیزر در حال حاضر می‏باشند

دیود لیزر، کوچک و بالنسبه کارآمد و نیرومند و همچنین قابل دستیابی در طول موج بالا (نزدیک 8/0 تا 7/1 متر) می‏باشد که به طور مستقیم مدوله می‏شود و پتانسیل عمر طولانی (تقریباً 105 ساعت) دارد. عیب اصلی آن، توان خروجی محدود شده نسبت به دیود است که در بیشتر کاربردها منجر به ترکیب شعاع می‏شود

Nd: YAG پمپ شده توسط ALGaAs مشکلات ترکیب شعاع را از بین می‏برد و تکنیک مدولاسیون پیشرفته‏ای دارد و معمولاً توان کافی جهت لینک وجود دارد. عیب کوچک آن این است که وسایل مدولاسیون الکترونوری بسیار پیشرفته، کاملاً پیچیده هستند و شامل هر دو ساختار Nd: YAG 06/1 میکرومتری و Nd: YAG دوبل 532/0 میکرومتری می‏باشند Nd: YAG پمپ شده دارای مشکل عمر و شیفت طول موج با عمر است

لیزر Co2 به طور قابل ملاحظه متفاوت از ALGaAs ، Nd: YAG می‏باشد و آن یک لیزر گازی است. لیزر Co2 توسط یک گاز و شارژ پمپ می‏شود. مقصود این است که اساساً این نوع لیزرها، تیوپ‏های شارژی هستند و دارای مشکلاتی در اثر خلأ، کاتد و آند می‏باشند. لیزرهای Co2 سه عیب دارند که اول محدودیت طول عمر که به دلیل طبیعت گاز و شارژ است و در واقع Co2 به طور شیمیایی واکنش داده و با مرور زمان به سمت Co پیش می‏رود. دوم ترکیب پیچیده هتروداین[1] یا آشکارسازی هموداین[2]است که به خاطر نیاز مسیر بحرانی اسیلاتور محلی و میدان‏های سیگنال بر روی سطح کریستال میکرو به وجود می‏آید

سومین عیب، نیاز به آشکارسازهای خنک شده می‏باشد. عامل‏هایی در جهت کم شدن این عیوب به کار می‏رود

با پیشرفت لیزرهای Co2 موج راهنما به جای گاز و شارژ، طول عمر را افزایش می‏دهد. البته عیب‏های مسیر بحرانی و آشکارسازی هموداین به اندازه‏ی محدودیت طول عمر مهم نیست

تکنولوژی ترکیب توان جهت دیودهای لیزری ALGaAs یک راه عملی افزایش توان و نرخ‏های قابل دسترسی دیتا ایجاد می‏کند. ترکیب کوهرنت[3] در اپتیک مجتمع پیشرفت‏های زیادی در دیود لیزر توسط افزایش شعاع هنگامی که انحراف شعاع کم می‏شود به وجود می‏آورد. به علاوه سطوح توان قابل دسترس بالاتر، جهت فرستنده‏های نرخ دیتا بالا مورد نیاز است. دیودهای لیزری در این سطوح توان، پاسخ‏های پالسی نانوثانیه عرضه می‏کند. برای سیستم‏های چند گیگابایت، پاسخ‏های زیر نانوثانیه نیاز است. افزایش توان خروجی، پهناهای پالسی کمتر و نرخ پالسی بالا جهت ارتباطات چند گیگا بایتی احتیاج می‏باشد

لیزر نیمه هادی ALGaAs در حال پیشرفت است و مشکلاتی مانند شیفت طول موج با افزایش عمر برطرف می‏شود. فرستنده‏های لیزری پیشرفته از تکنولوژی اپتیک مجتمع استفاده می‏کند

3-2- انتخاب لیزر

امروزه طراح سیستم‏های ارتباطی لیزر دو انتخاب جهت منبع لیزری دارد: دیود لیزر نیمه هادی و لیزر پمپ شده Nd: YAG باشد. اما برای بعضی کاربردها، کارایی و وزن دیودهای لیزر هم تراز محدودیت‏هایشان است. اگر چه لیزر پمپ شده  Nd:  YAG  پیچیده‏تر و سنگین‏تر از منبع دیود مستقیم است. شعاع متعادل کننده‏ای جهت ایجاد محدودیت انکسار، از آنتن فرستنده منتشر می‏کند

لیزرهای نیمه هادی جهت فرستنده‏های نوری در ارتباطات ماهواره‏ای یک منبع نوری ایده‏آل می‏باشند و دارای سایز و وزن کم و تأثیر و اعتماد بالا هستند. همچنین این نوع لیزرها به آسانی توسط تزریق جریان مستقیم مدوله می‏شوند

سایر چیپ لیزر تقریباً 200×200×100 میکرومتر با بیشترین وزن و سایز اشغال شده توسط لینک گرمایی Cu است

اثر تبدیل خروجی نوری به ورودی الکتریکی در حدود 35 درصد می‏باشد که لیزرهای نیمه هادی بالاترین اثر را نسبت به سایر منابع لیزری دارند. میانگین طول عمر لیزرهای نیمه هادی در حدود 105 تا 106 ساعت اندازه‏گیری شده است و دیودهای لیزری در دمای اتاق با نرخ بالای GHZ 12 و به طور مستقیم مدوله می‏شوند. مشکل ارتباطات فضایی به دلیل عدم کیفیت بالای وسایل طراحی است که با پیشرفت تکنولوژی لیزر نیمه هادی امید به بهبود می‏باشد

علاوه بر سایز و وزن کم و تأثیر و اطمینان بالا، به دلیل خواص زیر دیود‏های ALGaAs جهت کاربردهای فضایی مناسب هستند

1- انحراف شعاع کم

2- انتشار طول موج لیزرهای ALGaAs (از 8/0 تا 9/0 میکرومتر) که یک پیوند عالی با آشکارسازهای نوری سیلیکان بهمنی (APD)[4] است

3- توان خروجی بیش از mv

در ساده‏ترین تجسم دیود لیزر را یک جعبه لیزر سه بعدی در نظر می‏گیریم که در آن الکترون‏ها و حفره‏ها تزریق می‏شوند تا تعداد جمعیت را معکوس نمایند

دیوارهای جعبه، آینه‏های تراش‏دار (در جهت طولی)، لایه‏هایی با اتصال ناجور[5] (در جهت مورب) و اتصال خط (در جهت افقی) می‏باشند. وقتی ولتاژی به دیود در جهت مستقیم (به طرف P) به کاربرده می‏شود تا وقتی باندهای انرژی تخت هستند جریان کمی کشیده می‏شود

ولتاژ V جهت تخت کردن باند‏های انرژی نیاز می‏باشد تا تقریباً انرژی باند خلأ (ev) لایه میانی نزدیک کند. وقتی ولتاژ بیشتر از ولتاژ باند تخت انرژی یا (زانو) می‏شود جریان توسط مقاومت ساختار لیزر (1 تا 5 اهم) محدود می‏شود. خروجی نوری در آستانه کم است و وقتی تعداد کافی حامل‏ها جهت معکوس کردن جمعیت به کار روند خروجی نوری افزایش می‏یابد

4-2- طول عمر لیزر نیمه هادی

طول عمر لیزر نیمه هادی اغلب فرض می‏شود که نمونه‏ای از یک توزیع نرمال لگاریتمی مشابه دیودها و ترانزیستورهای سیلیکاتی و ژرمانیومی می‏باشد. در توزیع نرمال لگاریتمی طول عمر یک اشل زمانی لگاریتمی با توزیع گوسی است

محیط‏های تشعشعی هسته‏ای روی لیزرهای نیمه هادی اثر می‏گذارد. اطلاعات در دسترس نشان می‏دهد که دیودهای لیزری به سطوح تشعشعی 2cm / نوترون 1014 ، 108– 107 رادیان مجموع دوز تشعشع و 1011 اشعه X سختی بیشتری دارند. در عوض تشعشعاتی ظاهر می‏شوند که جریان آستانه لیزر را افزایش می‏دهند، شیفت طول موج می‏دهند، مد ساختار را عوض می‏کنند و تأخیر زمانی روشن شدن را افزایش می‏دهند

افزایش جریان آستانه لیزر به عنوان یک نتیجه از شعاع الکترون، گاما و نوترون که از کاهش اثر تشعشعی به وجود می‏آید، گزارش شده است. تغییرات مشابه در آستانه لیزر توسط بمباران پروتون رخ می‏دهد ولی نقصان‏های پروتون القاء شده، حفره‏ها را به دام می‏اندازد. نتیجتاً بر خلاف سایر تشعشعات بمباران پروتون جذب اپتیکی را افزایش می‏دهد ولی اثر تشعشعی قابل توجه نیست. معرفی دام‏های غیر تشعشعی اضافی توسط شعاع نوترونی جهت افزایش تأخیر زمانی روشن شدن لیزر پیشنهاد می‏شود. تغییرات در طول موج و مد ساختار لیزر تحت شعاع گاما و الکترون مشاهده می‏شود

به همین دلیل امروزه به دیودهای لیزری مثل VCSEL روی آورده شده است که به دلیل فواید منحصر به فرد آنها مثل کاهش Threshold، عملکرد موازی و اشعه‏های متقارن، قابلیت تست روی ویفر، و مدولاسیون پهنای باند وسیع، امروزه VCSEL ها به عنوان منبع نوری اساسی برای کاربردهای نوری در تجهیزات مخابراتی برای ذخیره‏ی انرژی نوری استفاده می‏شوند. تحقیقات اخیر روی این قطعات نگرانی‏هایی را در مورد افزایش تشعشع در طیف مرئی uv و فروسرخ که به وسیله‏ی طراحی‏های جدید به وجود می‏آید ایجاد کرده است البته این طراحی‏ها باعث بهبود قطعات تشعشعی هم می‏شود. برای این مشکل یک اشعه‏ی کنترلی بسیار دقیق مورد نیاز است. علی‏رغم محدودیت روی دیورژانس اشعه، مخصوصاً در رنج °10 تا °20 این دیودهای لیزری باید به وسیله‏ی المان‏های microoptical به هم متصل شوند تا عملکرد کل سیستم بهبود یابد و بتوانیم در زمینه‏های کابردی جدید از آنها استفاده کنیم و هدف ما هم متصل کردن المان‏های microoptical به یک VCSEL جهت کنترل خروجی می‏باشد

این دستیابی‏ها با استفاده از هر دو تکنولوژی hybrid  assembly و direct  integration می‏باشد و با توجه به میزان مقاومتشان در برطرف کردن خطاها و مرتب کردن قطعات در سطح ویفر در آزمایشگاه مقایسه می‏شوند

لیزر VCSEL

[1] Heterodyne

[2] Homodyne

[3] Coherent

[4]Avalanche  photodetector

[5] Hetrojunction

برای دریافت پروژه اینجا کلیک کنید

دانلود مقاله سیستم های کنترل گسترده پست های فشار قوی با word

برای دریافت پروژه اینجا کلیک کنید

 دانلود مقاله سیستم های کنترل گسترده پست های فشار قوی با word دارای 81 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد دانلود مقاله سیستم های کنترل گسترده پست های فشار قوی با word  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

بخشی از فهرست مطالب پروژه دانلود مقاله سیستم های کنترل گسترده پست های فشار قوی با word

چکیده
فصل اول
مقدمه
فصل دوم
طراحی و کارآیی SAS
1-2- طراحی و کارآیی SAS
2-2- مزایای کارآیی عملی سیستم
3-2- سیستم های مانیتورینگ و اتوماسیون
4-2- خصوصیات عمومی سیستم های SAS 5XX
فصل سوم
سیستم پیشرفته اتوماسیون پست SAS
1-3- سیستم پیشرفته اتوماسیون پست SAS
2-3- نصب سیستم
3-3- خصوصیات مشترک SAS
4-3- خصوصیات SAS
5-3- طراحی و عملکرد مشترک SAS
6-3- طراحی و عملکرد SAS
7-3- تجهیزات سیستم
8-3- تنظیمات سیستم
9-3- وظایف سیستم
10-3-وظایف ابتدایی مانیتورینگ سیستم
11-3- وظایف ابتدایی کنترل سیستم
12-3- نگاهی کلی به پست
13-3- وظایف ابتدایی مانیتورینگ (اختیاری)
14-3- وظایف ابتدایی کنترل (اختیاری)
15-3- خلاصه قابلیت های سیستم اتوماسیون پست
فصل چهارم
اجزاء سیستم اتوماسیون
1-4- کوپل کننده های ستاره ای (RER 111)
2-4- واحد گیرنده و فرستنده (RER 107)
3-4- GPS
4-4- نرم افزار کنترل سیستم اتوماسیون پست Micro Scada
5-4- فیبر نوری در سیستم حفاظت و کنترل پست های فشار قوی
6-4- رله REC 561 ترمینال کنترل حفاظت
7-4- رله REL 670 حفاظت دیستانس خط
8-4- رله RED 521 ترمینال حفاظت دیفرانسیل
9-4- رله RET 670 حفاظت ترانسفورماتور
10-4- رله REX 521 پشتیبان فیدر
11-4- سیستم REB 500 SYS حفاظت پست
12-4- رله RES 521 اندازه گیری زاویه
فصل پنجم
سیستم مانیتورینگ SMS
منابع و مآخذ

چکیده

به علت ساختار شبکه های توزیع، گستردگی و در معرض عوامل محیطی بودن آنها بسیاری از خاموشیهای اعمال شده به مشترکین ناشی از حوادث این شبکه هامی باشد

روش عیب یابی فعلی در شبکه های توزیع به علت عدم وجود تجهیزات حفاظتی و مانیتورینگ مناسب و نیز نبودن امکان کنترل از راه دور زمانبر بوده و بصورت سعی و خطا می باشد.این مسئله باعث برخی آسیبهای احتمالی به تجهیزات شبکه و مشترکین نیز می گردد

افزایش اطلاعات از وقایع سیستم اتوماسیون شبکه های توزیع در سالهای اخیر مورد توجه قرار گرفته است که با اجرای آن اطلاعاتی نظیر عملکرد تجهیزات حفاظتی، وضعیت کلیدها و مقادیر ولتاژ و جریان در مرکز قابل مشاهده بوده و امکان ارسال فرمان برای تجهیزات وجود دارد

در این پروژه سعی شده است معرفی جامعی از سیستمهای اتوماسیون ومانیتورینگ پست ارائه گردد

در فصل دوم از پروژه به شرح کلی سیستمهای اتوماسیون پست(SAS) پرداخته شده است و همچنین انواع سیستمهای پست همراه با مزایای آنها نیز بیان شده است

در فصل سوم، پیشرفته ترین سیستم اتوماسیون پست(SAS570) بطور کامل شرح داده شده است و به توزیع مواردی از قبیل خصوصیات، طراحی تجهیزات و وظایف این سیستم پرداخته شده است

اجزای سیستم اتوماسیون پست بسیار زیاد وگسترده است و صحبت در مورد تمامی آنها نیاز به تالیف چندین کتاب دارد ولی بطور خلاصه چند جزء مهم سیستم اتوماسیون پست در فصل چهارم آورده شده است

در فصل پنجم به شرح کاملی از سیستم مانیتورینگ پست(530 SMS) پرداخته شده است

امید است این پروژه بتواند دید جدیدی نسبت به تکنولوژی پیشرفته اتوماسیون و مانیتورینگ به شما ارائه کند

مقدمه

پیشروی با تکنولوژی روز در کلیه منابع به خصوص در صنعت برق جزء لاینفک و راز بقاء در این صنعت می باشد. گسترش سریع شبکه برق و همچنین سیر صعودی تعداد پستها در سطوح مختلف ولتاژ و تقاضای بسیار در بخش های صنعتی و غیر صنعتی امری اجتناب ناپذیر می باشد. با توجه به پیوستگی شبکه برق تحویل به موقع ان با کیفیت مطلوب و با حداقل وقفه به مصرف کننده یکی از وظایف مهم در امر بهره برداری به شمار می آید

و این جزء با توزیع بهینه برق در شبکه میسر نمی گردد. با توجه به اینکه پستها در هر سطحی از ولتاژ که باشند جزئی از اجزای اصلی تشکیل دهنده شبکه سراسری می باشند پس کنترل و نظارت دقیق و مستمر به معنی جلوگیری از اتلاف انرژی و ارتقاء بازدهی در بهره برداری از شبکه است و این جزء ارکان اساسی طراحی، توسعه و بهینه سازی پست ها می باشد. به همین منظور با بررسی از نحوه بهره برداری از پست های ایران خیلی سریع به اصول پایه ای آن یعنی نیاز به یک سیستم مدیریت قابل اطمینان در جهت کنترل پست ها می رسیم که در بیشتر نقاط دنیا به مرحله اجرا در امده است

با توجه به اینکه تصمیم گیرنده نهایی در پست ها اپراتور می باشد لذا دانستن اطلاعات لازم و کافی و به صورت لحظه ای و همچنین داشتن ابزارهای دقیق جهت تجزیه و تحلیل وقایع می تواند منجر به تصمیم گیری صحیح و عملا برآورد نیاز های فوق باشد

با توجه به اینکه تکنولوژی پست ها به خصوص در قسمت تجهیزات فشار قوی (Primary equipment) در سالهای گذشته چندان تغییر نکرده است و علی رغم کمابیش یکسان ماندن وظایف حفاظت و کنترل، تکنولوژی برق در این بخش کاملا دگرگون شده است و لزوم استفاده از این پیشرفت ها در یک مدیریت انرژی صحیح جهت بالا بردن بازدهی و تقلیل در هزینه ها و به صفر رساندن ضریب خطا در سیستم کنترل امری است الزامی و این جز با مانیتورینگ و اتوماسیون پست ها به تحقق نخواهد پیوست

امروزه واقعیتهای دنیای موجود در مورد کاهش شاخص انرژی توزیع شده و لزوم استفاده بهینه از ظرفیتهای نصب شده امر پیاده سازی اتوماسیون در نقاط کلیدی و حساس شبکه توزیع و انتقال یک الزام اجتناب ناپذیر به حساب می آید

از طرف دیگر وجود سطوح مختلف اتوماسیون توزیع تکنولوژی کارآمد و به روزی را جهت کنترل و مانیتورینگ کل شبکه می طلبد

با توجه به گستردگی شبکه توزیع در سیستمهای قدرت و نقش آنها در تغذیه انرژی مصرف کننده، امر دیده بانی و کنترل (اتوماسیون) بهینه این گونه شبکه ها از مراکز دیسپاچینگ توزیع، نقش بسیار مهم را در بهبود کیفیت تغذیه و کاهش هزینه های بهره وری، ایفا می کنند

این پروژه در مورد سیستم های مانیتورینگ و اتوماسیون پست ها می باشد. با توجه به این که میزان تولید برق به نوبه خود مهم می باشد، ولی از آن مهم تر انتقال دادن آن و پایداری سیستم قدرت می باشد. به همین منظور باید از یک تکنولوژی که بتواند برق را با کمترین هزینه و به کار گرفت. سیستم مانیتورینگ و اتوماسیون پست ها تمام خواسته های ما را تا حدود زیادی برآورده می کند

 پس از بررسی و گزارشات حوادثی که به دست آمده به سه عامل

نداشتن اطلاعات به موقع، استفاده نکردن از تمام اطلاعات و خطای انسانی می رسیم، از این رو وجود یک سیستم جدید که بتواند این سه نقص را به خوبی بر طرف کند کاملا در سیستمهای قدرت خطی احساس می شود. سیستم های اتوماسیون و مانیتورینگ که مورد بررسی قرار می گیرد به خوبی با کاراییهایی که دارند نه تنها این سه نقص را بر طرف می کنند بلکه ما را از فواید جدیدی که تا به حال از آن محروم بودیم برخوردار می کنند و قابلیت سیستم ها جای کمتری را اشغال می کنند

 یک پست فشار قوی شامل پنج قسمت است

قسمت اول تجهیزات primary یا out door  که در محوطه خارجی پست نصب می شود و کار اصلی پست در این قسمت انجام می شود. دارای مجموعه ای از کلیدهای فشار قوی، ترانس های جریان و ولتاژ و ترانسفورماتورهای قدرت می باشند

قسمت دوم اتاق فرمان که کار کنترل و نظارت پست را بر عهده وارد و قسمت سوم اتاق protection (حفاظت) است و چهارم باطریخانه است و پنجم که تمام پستها شامل آن می باشند فیدر‌kv‌20 است. (جهت مصارف داخلی)

ما می خواهیم ارتباط قسمت سوم را با سایر قسمتها در سیستم جدید بازنگری کنیم. در سیستم های مانیتورینگ و اتوماسیون به جای پانل های protection از پانل های کوچکتر با مجموعه ای از کارت های الکترونیکی هوشمند جایگزین شده است که در نزدیک Bay در خارج اتاق فرمان به صورت کانتینرهایی که مجهز به سیستم تهویه مطلوب می باشدبه صورت تک Bay یا چند Bay در یک جا نصب می شود. از این solution ها می توان نظارت و کنترل را بر کل تجهیزات خروجی پست داشت. یعنی ارتباط بین solutionها و اتاق کنترل و قسمت های مورد نیاز دیگر به صورت فیبر نوری می باشد. در این سیستم پانلهای حفاظتی جای خودشان را به پانلهای کوچکتر الکترونیکی می دهند

Get way به جای پانلهای RTU و Scada استفاده می شود که به دو صورت نرم افزار در درون کامپیوتر و یا به صورت یک قطعه سخت افزاری جداگانه (به اندازه یک رله) وجود دارد و نیز به جای تابلوهای فراوان در سیستم های اتوماسیون از کامپیوتر Work station استفاده می شود

 مزایای استفاده از این سیستم

–      داشتن اطلاعات به موقع (برای مرکز کنترل)

–      دادن اطلاعات به اپراتور به صورت online

–      بازدهی بالا

–      کم کردن خطای انسانی به خاطر سه مرحله ای بودن فرمان

–      قابلیت توسعه پست

–   تمام وسایل استفاده شده در این سیستم (solutions) (از نظر سخت افزاری و نرم افزاری) تقریباً به یک صورت است و تعویض راحتی دارد

–      به علت استفاده از کابل نوری، عیب یابی کابل راحت است و ظرفیت انتقال اطلاعات را بالا برده است

–   قابل توجه است که شرکت ABB رهبری تکنولوژی برق اتوماسیون پست ها و همچنین اتوماسیون شبکه را در دنیا برعهده دارد

 1-2- طراحی وکارایی سیستم 

سیستم SAS (Substation Automation System) اتوماسیون پستهای فشار قوی برای کنترل و نظارت بر تجهیزات پست طراحی شده است که ترکیبی از حفاظت، مانیتورینگ، کنترل و ارتباطات مخابراتی است. در این سیستم سرعت رفع معایب بالا رفته است. زمانی که برای آنالیز معایب و مشکلات سیستم قدرت تلاش می شود این سیستم با توجه به ابزار‌الکترونیکی هوشمند‌(IED-Intelligent Electronic Device) که در آن وجود دارد قادر است تمام رویدادها و خطاها را ثبت کند و نیز قادر است اطلاعات و داده ها را جمع آوری و پردازش کند و انتقال دهد. در اتوماسیون پست ها عملکرد اطلاعات و داده ها بهبود یافته است که این امر باعث افزایش قابلیت اطمینان و انعطاف منابع قدرت و دسترسی بهتر به آنها می شود

2-2- مزایای کارایی عملی این سیستم:

1- تجدید سریع تر برق

 2- کاهش ساعات قطعی برق

 3- بهبود کیفیت برق

4- کاهش تلفات برق تحویلی

 5- بالا بردن رضایت مشتریان

 6- افزایش درآمد

در سطح پست، سیستم های اتوماسیون پست (SAS) و سیستم های مانیتورینگ پست (SMS) بکار گرفته می شود. در سطح جانبی پست شامل یک رنج کاربرد ویژه برای کنترل (Bay Automation Solution- BAS) ، حفاظت (Bay protection solution -BPS) و مانیتورینگ (Bay monitoring solution – BMS) خطوط، ترانسفورماتورها، تغذیه کننده های خطوط کوپل کننده می باشد

3-2- سیستم های مانیتورینگ و اتوماسیون:

1- سیستم مانیتورینگ پست(530 SMS) برای تحصیل اطلاعات،‌پردازش و برآورد آنها

2- سیستم های ابتدایی اتوماسیون پست (SAS 500/510) برای کنترل ابتدایی از راه دور پست و مانیتورینگ

3- سیستم‌اتوماسیون‌پست‌(SAS 530/550)‌همراه‌با‌HMI رزرو‌(ایستگاه پشتیبان اضافی)

4- سیستم‌پیشرفته‌اتوماسیون‌پست‌(SAS570)‌با‌HMI (Human Machine Interface) رزرو و ورودی زیاد (Redundant Get way)  

 

کارآیی و قسمتهای اصلی هر سیستم

SAS معمولی (SAS 500/510)

برای نظارت و کنترل محلی یا از راه دور بکار گرفته می شود و برای پست های کوچک و متوسط توزیع و انتقال و نیروگاه ها و کارخانه های صنعتی طراحی شده و دارای امتیازات اصلی زیر است

–       درگاه ورودی بای پست

–       کامپیوتر HMI

–       طراحی باس جانبی

–       اجزای جدید و قابلیت دسترسی بالا

–       کنترل پیشرفته که به صورت اختیاری است

SAS بهینه (SAS 530/550)

این نوع سیستم اتوماسیون پست برای کنترل از نزدیک و یا از راه دور برای پست های انتقال و ولتاژ سیستم بالا استفاده می شود. قسمتهای اصلی آن عبارتند از

–       کامپیوتر HMI

–       HMI اضافی

–       ساختار ارتباطی چند سطحی

–       باس جانبی

–       نظارت مانیتورینگ و کنترل پیشرفته که به صورت اختیاری است

–       مسیر درگاه ورودی با قابلیت دسترسی بالا به طور جداگانه و اختیاری

SAS پیشرفته (570 SAS)

برای استفاده و نظارت مانیتورینگ و کنترل از نزدیک و از راه دور پست های انتقال با ولتاژ بسیار بالا و فشار بالا و فشار قوی (Extra High Voltage-EHV ) که دارای قسمتهای اصلی زیر است

–       HMI اضافی پست

–       مسیرهای اضافی (رزرو)

–       ساختار سیستم ایستگاه

–       باس اضافه ایستگاه

–       باس جانبی اضافی به طور اختیاری

توجه: سیستم پیشرفته اتوماسیون پست همچنین امکان دارد در پست های توزیع با اهمیت بالا و نیروگاه ها و کارخانه های صنعتی مهم استفاده شود

سیستم مانیتورینگ (530 SMS) در فصل پنجم مورد بررسی قرار می گیرد

4-2- خصوصیات عمومی سیستم های SAS5XX

–       شرایط مناسب برای کاربر

–       راهبرد سیستم باز

–       توزیع کاربردها

–       یکپارچگی در بین IED های حفاظت و کنترل

–       امنیت بالا

–       سهولت افزایش سیستم

–       سازگار با محیط الکترومغناطیسی(EMC )

–       سنکرون سازی زمان

–       امکان نمایش وضعیت ها و اتفاقات

–       اندازه گیری ها

–       فرمان دوبل و تک

–       استفاده از کابل های فیبر نوری

–       تنظیم آنالوگ

–       امکان انتخاب پیش از اجرا

–       وجود سیستم اعلام خطر و فهرست اتفاقات

–       نظرات بر سیستم و وسیله

–       نمایش تک خطی

–       سایر امکانات (در صورت تمایل و سفارش)

–       کنترل از طریق ارتباطات راه دور

–       گزارش اندازه گیری ها

–       تنظیم و بازخوانی پارامترهای IED از راه دور

–       آنالیز سابقه توزیع

–       رنگ امیزی دو خطی اتصال

–       بازآوری فایل ثبت توزیع

–       تنظیم ترتیب های سوئیچینگ به صورت خودکار

در فصل سوم به تشریح سیستم اتوماسیون پیشرفته (570 SAS ) می پردازیم

1-3- سیستم پیشرفته اتوماسیون پست SAS 570

در این فصل به بررسی مدرن ترین سیستم اتوماسیون پست می پردازیم

برای رسیدن به مزایای مدیریت سیستم قدرت، جمع کردن و براورد داده ها و ارتقاء وضعیت دستگاه ها به سطوح بالاتر، نیازمند یک سیستم اتوماسیون هستیم

سیستم اتوماسیون SAS 570 برای کنترل بر تجهیزات اولیه و ثانویه پست و مانیتورینگ عملکرد پست برای انتقال ولتاژهای فشار قوی طراحی شده است

این سیستم بالاترین ویرایش از خانواده سیستم های اتوماسیون پست است. ابزارهای الکترونیکی هوشمند (IED) برای حفاظت و کنترل یک قسمت سیستم اتوماسیون پست هستند. سیستم اتوماسیون پست و ابزارهای الکترونیکی هوشمند اساس کنترل از راه دور در سطوح بالا هستند، از جمله می توان به مدیریت پیشرفته سیستم قدرت و مانیتورینگ وضعیت تجهیزات تا زمانیکه در حال کار هستند اشاره کرد. سیستم SAS 570  بخشی از راهکار شرکت ABB برای اتوماسیون پست است که کنترل و حفاظت
(Bay protection solution – BPS , Bay control solution –BCS ) و کلیه اعمال مربوط به پست را در قالب پیوند ارتباطی و یکپارچه با مرکز کنترل تامین می کند. شکل 2-3 طراحی سیستم SAS 570 همراه با رایانه های مخصوص HMI را نشان می دهد

نقاط قوت این سیستم

–       طراحی برای سیستم های گسترده

–       بالاترین سطح قابلیت دسترسی

–       اتصال به صورت عمودی و افقی

–       ساختار توزیع یافته

–       حفاظت و کنترل تکمیلی

کاربرد سیستم های اتوماسیون SAS

–       پستهای انتقال ولتاژ فشار قوی

–       پستهای توزیع بسیار مهم

به عنوان مثال

–   برای یک پست انتقال GIS 132/220/500 کیلو ولت که از راه دور و همچنین در محل کنترل می‌شود. هر سه سطح ولتاژ توسط یک سیستم کنترل می شود

–   یک پست توزیع صنعتی در یک کارخانه شیمیایی با چند ژنراتور داخلی و تغذیه کننده خارجی و موتوری که فرایند را کنترل می کند

 

2-3- نصب سیستم

با توجه به نوع نیاز مشتری و تعداد کل IED در سیستم، ارتباطات  در سطح Bay طبق پیکربندیهای مختلف تنظیم می گردد

1- تک بخشی

وقتی کلیه IED ها بهم نزدیک باشند پیکربندی تک بخشی موثرترین راه حل است (یعنی کلیه پانل های کنترل و حفاظت در یک اتاق قرار دارند) اگر برای اتصال کلیه IED ها یک کوپل کننده ستاره ای کافی نباشد، یک کوپل کننده ستاره ای دیگر می توان به صورت سری وصل کرد

 2- چند بخشی

اگر اجباراً تعداد زیادی IED یکپارچه شوند و یا اگر رله ها در نقاط مختلف قرار دارند و سطح ولتاژ در اتاق کنترل متفاوت است می توان از پیکربندی چندی بخشی استفاده نمود. در سیستم SAS 570 تا چهار بخش قابل پیکربندی است.خصوصیات هر بخش با خصوصیات تک بخشی فوق الذکر همسان است

 3- کوپل کننده ستاره ای در هر کیوسک

در صورتی که IED های کنترل و حفاظت در نقاط متفاوت پراکنده شده اند (مثلا در AIS کیوسک ها در مجاورت سطح میدان قرار دارند)، هر کیوسک به یک کوپل کننده ای ستاره ای خاص خودش مجهز است و با کوپل کننده های ستاره ای توزیعی اتصال دارد

حداکثر 7 کوپل کننده ستاره ای به یک کوپل کننده ستاره ای مرکزی وصل هستند و در نتیجه یک بخش ساخته می شود بدین ترتیب حداکثر 4 بخش ساخته می شود و حداکثر 28 کوپل کننده توزیعی ستاره ای می تواند متصل شود. در صورت تقاضا، اتصال بین کوپل کننده های مرکزی با کوپل کننده های توزیعی ستاره ای می تواند از نوع اضافی تهیه شود

 کاربرد SAS پیشرفته برای انتقال ولتاژ فشار قوی و پست های توزیع

با توجه به نیاز قابلیت دسترسی بالا برای سیستم ارتباطی پست، و نظارت و کنترل سیستم  SAS 570 شامل دو کامپیوتر مرکزی اضاف باشد که در حالت (stand by) می باشند با رابط انتخابی برای کنترل از راه دور کار می کند. با بوجود آمدن اشکال در کامپیوتر در حال کار ، کامپیوتر رزرو فوراً تمام وظایف را به عهده می گیرد

هر دو کامپیوتر مرکزی از طریق LON با ابزار الکترونیک هوشمند کنترل قسمت جانبی اتصال دارند. ابزارهای الکترونیک هوشمند حفاظت می توانند از طریق باس LON و یا پروتوکل 60870-5-103 IEC تکمیل شوند. یک دریافت کننده GPS برای سنکرونیزاسیون زمان سیستم تهیه شده است. علاوه بر این دو کامپیوتر مرکزی سنکرونیزاسیون زمان سیستم تهیه شده است. علاوه بر این دو کامپیوتر اضافی به عنوان رابط HMI مرکزی اضافی با کامپیوترهای مرکزی اضافی بکار گرفته شده است. همچنین شبکه LAN مرکزی اتصال با وسایل جانبی ا بر عهده دارد و تعقیب پایگاه اطلاعات از طریق LAN اضافی انجام می‌شود SAS 570 می تواند با افزودن سیستم آلارم، محل کار اضافی و یک مودم مجزا برای دسترسی از راه دور، گسترش پیدا کند

3-3- خصوصیات مشترک SAS

 

برای دریافت پروژه اینجا کلیک کنید

دانلود مقاله حسگرهای مکان‌یاب با word

برای دریافت پروژه اینجا کلیک کنید

 دانلود مقاله حسگرهای مکان‌یاب با word دارای 34 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد دانلود مقاله حسگرهای مکان‌یاب با word  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

بخشی از فهرست مطالب پروژه دانلود مقاله حسگرهای مکان‌یاب با word

مقدمه  
سنسورهای بدون تماس   
مثال هایی از کاربرد سنسورها   
مزایای سنسورهای بدون تماس یا همجواری   
سنسورهای القائی   
اساس کار و ساختمان سنسورهای القائی   
نحوه نصب سنسورهای القائی   
اینداکتوسین- Inductosyn   
معرفی و تاریخچه   
مگنسین- Magnesyn  
میکروسین- Microsyns   
معرفی   
مدارات بهسازی  
ویژگیها   
کاربرد   
LVDT – Linear Variable Transformer  
معرفی و تاریخچه     
ایده اصلی   
مدارات  بهسازی   
RVDT  
معرفی  
مشخصات کلی RVDT  
ویژگیهای کلی   
کاربرد   
بررسی یک نمونه سنسور موقعیت زاویه ای مطلق  
کاربردهای ویژه  
سنسورهای هوشمند  
جدول مشخصات  سنسور   
جمع بندی   
مقایسه ای بین دقت سنسور های زاویه ای متداول   

مقدمه

حسگر یا سنسور المان حس کننده ای است که کمیتهای فیزیکی مانند فشار، حرارت، رطوبت، دما، و ; را به کمیتهای الکتریکی پیوسته (آنالوگ) یا غیرپیوسته (دیجیتال) تبدیل می کند. در واقع آن یک وسیله الکتریکی است که تغییرات فیزیکی یا شیمیایی را اندازه گیری می کند و آن را به سیگنال الکتریکی تبدیل می نماید

سنسورها در انواع دستگاههای اندازه گیری، سیستمهای کنترل آنالوگ و دیجیتال مانند PLC مورد استفاده قرار می گیرند. عملکرد سنسورها و قابلیت اتصال آنها به دستگاههای مختلف از جمله PLC باعث شده است که سنسور بخشی از اجزای جدا نشدنی دستگاه کنترل اتوماتیک و رباتیک باشد. (برای مطالعه بیشتر در مورد PLCها به سایر مقالات سایت میکرو رایانه در تالار گفتگو مراجعه نمایید)

سنسورها اطلاعات مختلف از وضعیت اجزای متحرک سیستم را به واحد کنترل ارسال نموده و باعث تغییر وضعیت عملکرد دستگاهها می شوند

سنسورهای بدون تماس

سنسورهای بدون تماس سنسورهائی هستند که با نزدیک شدن یک قطعه وجود آن را حس کرده و فعال می شوند. این عمل به نحوی است که می تواند باعث جذب یک رله، کنتاکتور و یا ارسال سیگنال الکتریکی به طبقه ورودی یک سیستم گردد

مثال هایی از کاربرد سنسورها

1-شمارش تولید: سنسورهای القائی، خازنی و نوری

2-کنترل حرکت پارچه و ;: سنسور نوری و خازنی

3-کنترل سطح مخازن: سنسور نوری و خازنی و خازنی کنترل سطح

4-تشخیص پارگی ورق: سنسور نوری

5-کنترل انحراف پارچه: سنسور نوری و خازنی

6-کنترل تردد: سنسور نوری

7-اندازه گیری سرعت: سنسور القائی و خازنی

8-اندازه گیری فاصله قطعه: سنسور القائی آنالوگ

مزایای سنسورهای بدون تماس یا همجواری

سرعت سوئیچینگ زیاد:

سنسورها در مقایسه با کلیدهای مکانیکی از سرعت سوئیچینگ بالائی برخوردارند، به طوریکه برخی از آنها (سنسور القائی سرعت) با سرعت سوئیچینگ تا 25KHz کار می کنند

طول عمر زیاد:

بدلیل نداشتن کنتاکت مکانیکی و عدم نفوذ آب، روغن، گرد و غبار و ; دارای طول عمر زیادی هستند

عدم نیاز به نیرو و فشار:

با توجه به عملکرد سنسور هنگام نزدیک شدن قطعه، به نیرو و فشار نیازی نیست

قابل استفاده در محیطهای مختلف با شرایط سخت کاری:

سنسورها در محیطهای با فشار زیاد، دمای بالا، اسیدی، روغنی، آب و ; قابل استفاده می باشند

عدم ایجاد نویز در هنگام سوئیچینگ:

به دلیل استفاده از نیمه هادی ها در طبقه خروجی، نویزهای مزاحم (Bouncing Noise) ایجاد نمی شود

سنسورهای القائی

سنسورهای القائی سنسورهای بدون تماس هستند که تنها در مقابل فلزات عکس العمل نشان می دهند و می‌توانند فرمان مستقیم به رله ها، شیرهای برقی، سیستمهای اندازه گیری و مدارات کنترل الکتریکی (مانند PLC) ارسال نمایند

اساس کار و ساختمان سنسورهای القائی

ساختمان این سنسورها از چهار طبقه تشکیل می شود: اسیلاتور، دمدولاتور، اشمیت تریگر، تقویت خروجی

اسیلاتور:

قسمت اساسی این سنسورها از یک اسیلاتور با فرکانس بالا تشکیل یافته که می تواند توسط قطعات فلزی تحت تاثیر قرار گیرد. (توضیحات بیشتر در سایر مقالات سایت میکرو رایانه) این اسیلاتور باعث بوجود آمدن میدان الکترومغناطیسی در قسمت حساس سنسور می شود. نزدیک شدن یک قطعه فلزی باعث بوجود آمدن جریانهای گردابی در قطعه گردیده و این عمل سبب جذب انرژی میدان می شود و در نتیجه دامنه اسیلاتور کاهش می یابد. از آنجا که طبقه دمدلاتور، آشکارساز دامنه اسیلاتور است در نتیجه کاهش دامنه اسیلاتور توسط این قسمت به طبقه اشمیت تریگر منتقل می شود. کاهش دامنه اسیلاتور باعث فعال شدن خروجی اشمیت تریگر گردیده و این قسمت نیز به نوبه خود باعث تحریک طبقه خروجی می شود

قطعه استاندارد:

یک قطعه مربعی شکل از فولاد ST37 است که از آن به منظور تست فاصله سوئیچینگ استفاده می شود. (استاندارد IEC947-5-2). ضخامت قطعه 1mm و طول ضلع این مربع در اندازه های زیر می تواند انتخاب شود

1- به اندازه قطر سنسور

2- سه برابر فاصله سوئیچینگ نامی سنسور 3*Sn

ضرایب تصحیح:

فاصله سوئیچینگ با کوچکتر شدن ابعاد قطعه استاندارد و یا با بکارگیری فلز دیگری غیر از فولاد ST37 تغییر خواهد کرد. در زیر ضرایب تصحیح برای فلزات مختلف نشان داده شده است

ضریب تصحیح (KM) برای فولاد ST37 برابر 1

ضریب تصحیح (KM) برای نیکل برابر 0

ضریب تصحیح (KM) برای برنج برابر 0

ضریب تصحیح (KM) برای مس برابر 0

ضریب تصحیح (KM) برای آلومینیوم برابر 0

به عنوان مثال هرگاه یک سنسور در مقابل فولاد از فاصله 10mm عمل سوئیچینگ را انجام دهد، همان سنسور در مقابل مس از فاصله 45mm عمل خواهد کرد

فرکانس سوئیچینگ:

حداکثر تعداد قطع و وصل یک سنسور در یک ثانیه می باشد. (بر حسب Hz). این پارامتر طبق استاندارد DIN EN 50010 با شرایط زیر اندازه گرفته می شود

فاصله سوئیچینگ Switching Distance) S):

فاصله بین قطعه استاندارد و سطح حساس سنسور به هنگام عمل سوئیچینگ می باشد. (استاندارد EN 50010)

فاصله سوئیچینگ نامی Nominal Switching Distance) Sn):

فاصله ای است که در حالت متعارف و بدون در نظر گرفتن پارامترهای متغیر از قبیل حرارت، ولتاژ تغذیه و غیره تعریف شده است

فاصله سوئیچینگ موثر Effective Switching Distance) Sr):

فاصله سوئیچینگ تحت شرایط ولتاژ نامی و حرارت 20 درجه سلسیوس می باشد. در این حالت تلرانسها و پارامترهای متغیر نیز در نظر گرفته شده اند. 09Sn<SR<1.1SN>

فاصله سوئیچینگ مفید Useful Switching Distance) Su):

فاصله ای است که در محدوده حرارت و ولتاژ مجاز، عمل سوئیچینگ انجام می شود. 081Sn<SU<1.21SN

 فاصله سوئیچینگ عملیاتی Operating Switching Distance) Sa)

فاصله ای است که تحت شرایط مجاز، عملکرد سنسور تضمین شده است. 0<SA<0.81SN

هیسترزیس H:

فاصله بین نقطه وصل شدن (هنگام نزدیک شدن قطعه به سنسور) و نقطه قطع شدن (هنگام دورشدن قطعه از سنسور) می باشد. حداکثر این مقدار 10% مقدار نامی می باشد. (استاندارد EN 60947-5-2)

قابلیت تکرار Repeatability) R):

قابلیت تکرار فاصله سوئیچینگ مفید تحت ولتاژ تغذیه V و در شرایط زیر اندازه گیری می شود: حرارت محیط: 23 درجه سلسیوس؛ رطوبت محیط: 50 الی 70 درصد؛ زمان تست: 8 ساعت. (مقدار تلرانس برای این پارامتر طبق استاندارد EN 60947-5-2 حداکثر +-01Sr می باشد.)

پایداری حرارتی (Temperature Drift):

تغییرات فاصله موثر سوئیچینگ در اثر تغییرات دما طبق استاندارد EN 60947-5-2 و در محدوده دمای 20 درجه سلسیوس زیر صفر تا 60 درجه سلسیوس بالای صفر حداکثر 10% است

حرارت محیط (Ambient Temperature) Ta:

محدوده حرارتی است که در آن محدوده، عملکرد سنسور تضمین شده است

 نحوه نصب سنسورهای القائی

 

برای دریافت پروژه اینجا کلیک کنید

دانلود پروژه طراحی و ساخت شبیه ساز آسانسور با AVR با word

برای دریافت پروژه اینجا کلیک کنید

 دانلود پروژه طراحی و ساخت شبیه ساز آسانسور با AVR با word دارای 56 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد دانلود پروژه طراحی و ساخت شبیه ساز آسانسور با AVR با word  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

بخشی از فهرست مطالب پروژه دانلود پروژه طراحی و ساخت شبیه ساز آسانسور با AVR با word

فصل 1-  شرح پروژه 
1-1-  بخش های پروژه آسانسور 
فصل 2-  قسمت‌های مکانیکی 
فصل 3-  بخش‌های سخت افزار الکترونیکی 
3-1-  منبع تغذیه و مدارات تثبیت کننده ولتاژ 
3-1-1-  رگولاتورها یا تثبیت کننده‌های ولتاژ 
3-2-  سنسورهای نوری و همچنین کلیدها 
فصل 4-  اصول تزویج کننده های نوری 
4-1-  نسبت تبدیل تزویج کننده نوری 
4-2-  ولتاژ جداسازی 
4-3-  Vce(MAX)          
4-4-  If(MAX)   
4-5-  پهنای باند 
فصل 5-  نمایشگرها 
فصل 6-  قسمت میکروکنترولر برای انجام محاسبات و تصمیم گیری و همچنین کنترل اجزای دیگر            
فصل 7-  موتور و مدارات مربوط به آن 
7-1-  مختصری راجع به استپ موتور 
7-2-  متداولترین نوع موتورهای پله‌ای 
فصل 8-  مختصری راجع به آی‌سی درایور ULN2003A 
8-1-  مشخصات این آی سی 
فصل 9-  قسمت نرم‌افزار و برنامه نویسی میکروکنترولر 
فصل 10-  برنامه به زبان بیسیک 
فصل 11-  الگوریتم   
فصل 12-  مختصری در مورد برنامه مدار 
12-1-  شماتیک مدار  

مقدمه

هدف از این مدار شبیه‌سازی یک آسانسور مبتنی بر سیستم میکروکنترولری است و مدلی کوچک برای طراحی یک آسانسور می‌باشد

این آسانسور دارای 4 طبقه است که در داخل آسانسور کلیدهای 1-4 برای انتخاب طبقه مورد نظر وجود دارد. در بیرون آسانسور و جلو درب‌ها کلیدی نیز وجود دارد که عملکرد آن مانند کلیدهای داخل آسانسور است و هر یک از آنها نماینده شماره طبقه مورد نظر است

در جلو درب هر طبقه یک نمایشگر 7-Seg و یک لامپ در زیر هر کلید وجود دارد. از نمایشگر 7-Seg به منظور نمایش موقعیت آسانسور استفاده می‌شود

روشن بودن لامپ‌های زیر هر کلید درخواست توقف آسانسور برای طبقه مورد نظر را  نشان می‌دهد و پس از توقف آسانسور در طبقه مربوطه لامپ خاموش خواهد شد. همچنین عملکرد لامپ‌های کلیدهای داخل آسانسور نیز بصورت ذکر شده می‌باشد

نحوه عملکرد کلی مدار بصورت زیر است

به دلیل اینکه آسانسور داری 4 طبقه است به همین منظور 4 رجیستر که بصورت یک صف پیکربندی شده اند نیز به منظور ثبت درخواست‌ها و رسیدگی به آنها بکار می‌رود

نحوه پاسخ به درخواست‌ها اینگونه است که پس از هر درخواست، شماره طبقه مورد نظر در یکی از رجیسترها ثبت می‌شود

بطوریکه درخواست اول در رجیستر اول و در خواست دوم در رجیستر دوم و ; . پس از اینکه رجیستر اول از شماره طبقه مورد نظر پر شد، آسانسور شروع به حرکت به سمت طبقه مورد نظر می‌کند

در همین بین رجیسترهای 2 و 3 و 4 را چک می‌کند و اگر طبقه درخواست شده دیگری بین مبدا و مقصد ثبت شده باشد در آنجا نیز توقف می‌کند. پس از توقف در هر طبقه، شماره طبقه مورد نظر از صف درخواست‌ها حذف شده و برنامه با شیفت دادن درخواست‌ها فاصله بوجود آمده را حذف می‌کند

پس از رسیدن آسانسور به مقصد اول، شماره درخواست آن از رجیستر اول حذف گردیده و درخواست‌ها به سمت آن رجیستر به منظور حذف فضای خالی ایجاد شده شیفت داده می‌شوند. در این مرحله دستگاه دوباره رجیستر اول را چک می‌کند و طبقه مورد نظر را مقصد قرار می‌دهد و فرایند بالا مکررا تکرار می‌گردد

امکانات مورد نیاز برای پروژه

یک میکروکنترولر برای عمل پردازش و کنترل فرایندها
یک مدار تغذیه تثبیت شده با قابلیت اطمینان مناسب به منظور تامین جریان مورد نیاز برای قسمت‌های ولتاژ پایین و حساس
کلیدها
نمایشگرها
کابل‌ها و فیبر مدار چاپی و دیگر اتصالات

فصل 1-           شرح پروژه

این پروژه مربوط به طراحی یک آسانسور با اجزای مکانیکی و شبیه به آسانسور واقعی است. با توجه به پیچیدگی آسانسور واقعی و قطعات مورد استفاده در اینگونه دستگاه‌ها و با توجه به اینکه این پروژه می‌بایست در ابعاد کوچک محقق گردد و همچنین لزوم کم هزینه بودن طرح، این آسانسور کمی از سیستم آسانسور واقعی فاصله گرفته ولی در کل سعی شده که شباهت زیادی به آسانسور واقعی داشته باشد

از جمله موراد عدم استفاده از سیستم‌های ترمز موجود در آسانسور واقعی است. با توجه به اینکه این امر در این ابعاد محقق نیست و در صورت امکان هزینه بر است مجبور شدیم تا از روش دیگر این کار را انجام دهیم. که متعاقبا ذکر خواهد شد

با توجه به اینکه طرح یک نمونه کوچک باید باشد، تعداد طبقات به منظور کوچکی دستگاه به 3 طبقه محدود گردید. که کمترین ابعاد به جهت پیاده سازی ویژگی‌های نرم افزاری و ساختار تصمیم گیری با توجه به موقعیت‌های مختلف است. بعنوان مثال میتوان به توقف در طبقات میانی در صورت درخواست و در طول حرکت اشاره کرد

1-1-      بخش های پروژه آسانسور

بطور کلی این پروژه از سه بخش زیر تشکیل شده که درباره آنها بطور کامل بحث خواهد شد

1-      مکانیک

2-    سخت افزار الکترونیک

3-   نرم افزار و برنامه‌نویسی میکروکنترولر

4-    قسمت‌های مکانیکی

فصل 2-           قسمت‌های مکانیکی

پیاده‌سازی این بخش با توجه به محدودیت قطعات و همچنین بالا بودن هزینه‌ها کمی مشکل ایجاد می‌کند و دردسر ساز است

طراحی بخش متحرک آسانسور که بتواند بدون حرکت افقی خاصی که ایجاد مشکل کند، کار خود را انجام دهد. و یا اینکه این حرکات موجب خطای سنسورهای مورد استفاده نشود. همچنین استحکام قسمت‌های مکانیکی نیز باید مورد توجه قرار می‌گرفت

یکی از مشکلات دیگر انتخاب یک بخش برای ایجاد گشتاور برای بالا و یا پائین بردن قسمت متحرک آسانسور بود

سرعت چرخش موتور با توجه به ابعاد طرح باید پائین باشد و همچنین موتور نیز می‌بایست از قدرت مناسبی برخوردار باشد. همچنین یک سیستم ترمز نیز باید برای مدار در نظر گرفته می‌شد. از دیگر مسائل موجود انتخاب محل مناسب برای سنسور بود

البته قسمت‌های مکانیکی با توجه به اینکه کاملا قابل روئیت هستند نیاز به توضیح ندارند و در این گزارش از توضیح آن به همین مطالب بالا اکتفا می‌شود. شکل‌های 1 الی 5، نمایی از آسانسور را نشان میدهد

برای دریافت پروژه اینجا کلیک کنید

دانلود پایان نامه بررسی و شبیه سازی عملکرد کنترلر CAN ، با استفاده از زبان توصیف سخت افزاری VHDL، و پیاده سازی آن بر روی FPGA با word

برای دریافت پروژه اینجا کلیک کنید

 دانلود پایان نامه بررسی و شبیه سازی عملکرد کنترلر CAN ، با استفاده از زبان توصیف سخت افزاری VHDL، و پیاده سازی آن بر روی FPGA با word دارای 99 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد دانلود پایان نامه بررسی و شبیه سازی عملکرد کنترلر CAN ، با استفاده از زبان توصیف سخت افزاری VHDL، و پیاده سازی آن بر روی FPGA با word  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

بخشی از فهرست مطالب پروژه دانلود پایان نامه بررسی و شبیه سازی عملکرد کنترلر CAN ، با استفاده از زبان توصیف سخت افزاری VHDL، و پیاده سازی آن بر روی FPGA با word

چکیده
فصل اول – مقدمه
1-1-    مقدمه
1-2-    معرفی CAN
1-3-    مقدمه ای بر تراشه های قابل برنامه ریزی
1-4-    مروری بر زبان های توصیف سخت افزاری
1-5-    نرم افزارهای طراحی تراشه های FPGA
فصل دوم – مروری بر کارهای انجام شده
2-1- مقدمه
2-2- میکروکنترلر مقاوم شده در برابر تشعشع
2-3- کانولوشن کننده های (Convolelrs) دو بعدی
2-4- فیلترهای دیجیتال
2-4-1- فیلترهای با پاسخ ضربه محدود (FIR)
2-4-2- فیلترهای با پاسخ ضربه نامحدود (IIR)
2-4-3- فیلترهای Wavelet متقارن
2-5- تبدیل کسینوسی گسسته و معکوس آن (IDCT,DCT)
2-6- مبدلهای فضای رنگی ( )
2-7- مدولاتور دیجیتال
2-8- کنترلر گذرگاه USB
2-9- کنترلر گذرگاه PCI
2-10-کد کننده گفتار ITU-T G
2-11- کد کننده ها کدفایر
2-12- پیاده سازی سخت افزاری الگوریتم های سطح بالای پردازش تصویر
با استفاده از پیکر بندی جزئی FPGA در زمان اجرا
2-13- مترجم های زبان های سطح بالا به زبان VHDL
2-14- پیاده سازی یک پردازشگر تصویر قابل پیکر بندی مجدد
2-15- جمع بندی
فصل سوم – کنترلر گذرگاه CAN
3-1- مقدمه
3-2- پایه های تراشه کنترلر CAN
3-3- بررسی سخت افزار کنترلر CAN
3-3-1- شمارنده های خطا در کنترلر CAN
3-3-2- ثبات های کنترل
3-3-2-1- ثبات فعال کننده وقفه ها
3-3-2-2- ثبات وضعیت
3-3-2-3-  ثبات واسط CPU
3-3-2-4- ثبات پیکربندی گذرگاه
3-3-2-5- ثبات CIK out
3-3-3- واحد زمان بندی بیت
3-3-3-1- سرعت نامی نرخ بیت
3-3-3-2- ثبات صفر زمان بندی بیت
3-3-3-3- ثبات یک زمان بندی بیت
3-3-4- ثبات ماسک توسعه یافته و استاندارد
3-3-5- بسته های پیام
3-3-5-1- میدان کنترل
3-3-5-2- میدان داوری یا شناسه
3-3-5-3- میدان داده
3-3-5-4- میدان ترکیب بندی
3-3-6- ثبات وقفه
3-4- دریافت و ارسال پیام
3-4-1- انواع فریم های اطلاعات قابل مبادله بین گره ها و کنترلر
3-4-1-1- فریم داده
3-4-1-2- فریم دور
3-4-1-3- فریم خطا
3-4-1-4- فریم اضافه بار
3-4-2- بررسی کدهای خطا در تبادلات کنترلرCAN
فصل چهارم – خلاصه ای از خصوصیات اصلی زبان VHDL
4-1- مقدمه
4-2- شی (object)
4-3- عملگرهای زبان VHDL
4-4- توصیف کننده های یک مولفه
4-5- ساختارهای همزمانی و ترتیبی
4-6- روشهای توصیف سخت افزار
4-6-1- روش توصیف ساختاری
4-6-2- روش توصیف فلوی داده (Data Flow)
4-6-3- روش توصیف رفتاری
4-7- کد نویسی قابل سنتز
4-8- جمع بندی
فصل پنجم – پیاده سازی کنترلر گذرگاه CAN
5-1- مقدمه
5-2-ثبات ارسال و دریافت پیام در کنترلر
5-3- ثبات ماسک
5-4- سیستم مقایسه شناسه ها
5-5- افزایش تعداد بسته های پیام
5-6- واحد  محاسبه کننده کد CRC
5-7- دیاگرام پایه های کنترلر طراحی شده و پیاده سازی دیکودر آدرس
5-8- نرم افزار مورد استفاده در پیاده سازی کنترلر CAN
5-9- جمع بندی
فصل ششم – نتایج و جمع بندی
6-1- مقدمه
6-2- نتایج حاصل از تست وضعیتهای مختلف کنترلر
6-3- نتایج حاصل از تست واحد CRC توسعه یافته
6-4- نتایج حاصل از تست  stuff bit
6-5- ارسال فریم خطا
6-6- بررسی وضعیت پایه فرکانس خروجی CLK out
6-7- بررسی عملکرد حالت Sleep , pwd
6-8- نتایج مربوط به پیاده سازی سخت افزار روی تراشه
6-9- نتیجه گیری و پیشنهادات برای ادامه کار
مراجع

بخشی از منابع و مراجع پروژه دانلود پایان نامه بررسی و شبیه سازی عملکرد کنترلر CAN ، با استفاده از زبان توصیف سخت افزاری VHDL، و پیاده سازی آن بر روی FPGA با word

[1]”82527 Serial Communications Controller”, Intel,

 [2] “Data Link Layer”, available at Am Weichselgarten 26, D-91058 Erlangen, headquarters@ can – cia. De

 [3]”Milsone of CAN history”,

 [4] “CANopen,an overview

 [5] “CAN in passenger cares

 [6] عباس وفائی مبانی تراشه های قابل برنامه ریزی دانشگاه اصفهان، 1380

 [7] Ghosh . s, “Hardware Description Language, Concepts and principles”, IEEE Press,

 [8]DeLima,F.G.E.,Carro,L.,Lubaszewski,M.,Reis,R., Velazco,R.,”Designing a Radiation Hardened 8051 – Like Micro-Controller”,proceedings of the 13th Symposium on Integrated Circuits and Systems Design , Grenoble- France
( SBCCI’00 )

 [9] “Implementing Logic with the Embedded Array in FLEX 10K Devices”

 [10] Kazizimierz Wiatr and Ernest Jamro,”Implementation Image Data Convolutions operations in FPGA Rconfigurable Structures for Real – Time Vision Systems”,proceedings of the  The Interntional Conference on Information Technology: Coding and Computing

 [11] ستار میرزا کوچکی، شهرام طلاکوب” پیاده سازی سخت افزاری یک فیلتر دیجیتال FIR معکوس شده”. دهمین کنفرانس برق، تبریز، اردیبهشت

 [12] Oppenhim, A. V. And Schafer, R.W.”Discrete-Time Signal processing”, prentice –Hall,

 [13]”Impementing FIR Filters in FLEX Devices”,

 [14] Lorca, F.G, Kessal, L., Demigny, D. “Efficient ASIC and FPGA Implementations of IIR Filters for real time edge detection”, proceedings of The 1997 International Conference on Image processing, Cergy pontoise, France (ICIP‍‍َ97)

 [15] Biquad IIR Filter”

 [16] Mari`A.Trenas, Juan Lo`pez and Emilio L.Zapata, “FPGA Implementation of Wavelet packet Transform With Reconfigurable Tree Structure”,proceedings of The 26 th EUROMICRO Conference, Universidad de Malaga,

 [17] “Biorthogonal Wavelet Filter Megafunction”,

 [18] “Discrete Cosine Transform Megafunctions”,

 [19] “RGB2YCrCb8YCrCB2RGB Converter”,

[20]” Digital Modulator Megafunction”,

 [21] “New Bus Architectures: How CardBus Fits with IEEE 1394, USB, and PCI and Others.”Intel Inc.1998,

 [22]”USB Host Controller Megafunction”

 [23] سید مهدی فخرائی، فرشید رئیسی، مهدیه مهران،؛ پیاده سازی کنترلر گذرگاه PCI بر روی “FPGA پایان نامه کارشناسی ارشد، دانشگاه صنعتی خواجه نصرالدین طوسی، زمستان 79

[24] مهران شتابی، احمد اکبری، “ پیاده سازی کد کننده های گفتار با استفاده از سیستم های با قابلیت پیکربندی مجدد”، یازدهمین کنفرانس برق، شیراز، اردیبهشت 82

[25] مهدی قویدل جلیسه، حسن حاج قاسم، محمد ابراهیم نژاد سلمانی، “ طراحی و پیاده سازی ASIC کد کننده و کد بردار کد فایر”، یازدهمین کنفرانس برق، شیراز، اردیبهشت

[26] محمود فتحی، صالح یوسفی. “ پیاده سازی سخت افزاری الگوریتمهای سطح بالای پردازش تصویر با استفاده از پیکربندی جزئی FPGA در زمان اجرا”، یازدهمین کنفرانس برق، شیراز، اردیبهشت

 [27] Rinker,R.,Hammes,J,“Compiling Image processing Applications to Reconfigurable Hardware”,Proceedings of the IEEE International Conference on Application Specific Systems, ASAP

 [28] Bios,G., Bosi,B.,” High performance Reconfigurable Coprocessor for Digital Mentor Graphics User s Group, Oregan,Oct

 [29] Haldar,M., Nayka, A., Choudhary,A., “FPGA Hardware Synthesis From Matlab”, 14th International Conference on VLSI Design, Bangalore, India, January 03-07,

 [30] Lbrra, A.,Femandez, C., Alvarez, B. Femandez-Merono J.M..”FPGA Solution for Low Cost Applications of Real – Time Automated Visual Inspection (RT-AVI) Systems”, Dedicated Systems Magazine –2001 Q2)

 [31] Woods,r., “Applying an XC 6200 to Real-Time Image Processing”, IEEE Design and Test of Computers, Vol.15, No.1, Jan-March

 [32] Fawcett, B.K., Watson, J.,”Reconfigurable processing with Field programmable Gate Arrays”, International Conference on Application-specific  System, Architectures, and processor, Chicago, IL,

 [33] “Embedded Microcontrollers”, Intel

 [34] “CAN Specification 2.0 part B”,

[35] “CAN Specification 2.0 part A”, 

 [36] Navabi, Z., “VHDL Analysis and Modeling of Digital Systems” , 2nd edition, McGraw – Hill,

 [37] Ashenden, P.J., “The designer s Guide to VHDL” , 2nd edition, Academic Press,

 [38] Cohen, B., “VHDL Coding Styles and Methodologies ” ,2nd edition, Kluwer Academic Publishers,

 [39] Armstrong, J.R. Gray , F.G. , ” VHDL Design Repersentation and Synthesis” , 2nd edition , Prentice – Hall PTR ,

 [40] Pellerin, D. and D.Taylor, D., “VHDL Made Easy” , Prentice Hall Inc,

 [41] Mano, M.M., ” Computer System Architecture ” 3rd edition , Prentice-Hall,

 [42] Mazidi, M.A. ” The 80X86 IBMPC  & compatible computers” , 2 nd edition , prentice- Hall, VolumeII,

 [43] Anderw Tanebaum, S.” computer Networks” , 3rd edition, Prentice-Hall,

 [44] Nair, R ., Ryan G., Farzaneh, F., “A symbol Based Algorithm for Hardware Implementation of cyclic Redundancy Check (CRC)” , 1997 VHDL International User s Forum , Arlington,

 [45] Atmel Inc. ” Configurable Lagic Data Book” ,

چکیده

یکی از موضوعات مطرح در اتوماسیون صنعتی و روباتیک تبادل اطلاعات بین اجزاء شبکه مانند CPU و فرستنده و گیرنده هایی است که نظارت و کنترل اجزاء یک سیستم را بعهده دارند از جمله زیر ساختهای لازم برای تبادل اطلاعات وجود شبکه ها  و گذرگاه های تعریف شده و استاندارد برای اتصال اجزاء یک سیستم اتوماسیون صنعتی است شبکه کنترل محلی (CAN-Control Area Network) و گذرگاه آن مدتی است که در سیستمهای صنعتی مورد استفاده قرار گرفته است و تراشه های متعددی با عنوان کنترلر گذرگاه CAN مورد استفاده قرار می گیرد یکی از این محصولات تراشه 82527 اینتل می باشد که اخیرا مورد توجه طراحان شبکه های کنترل محلی قرار گرفته است

از ابداعات جدید علم الکترونیک که امروزه کاربرد روزافزونی یافته است طراحی و پیاده سازی مدارهای دیجیتال و پردازنده های با کاربرد خاص بر روی تراشه های قابل برنامه ریزی FPGA است از مزایای مهم این نوع پیاده سازی طراحی مدارهای با قابلیت پیکربندی مجدد بر اساس خواست طراح است

علاوه بر این در صورتی که تهیه یک تراشه با کاربرد خاص بنا به دلایل گوناگون از جمله عدم انتقال تکنولوژی مشکل باشد با داشتن و مشخصات کاری آن تراشه به این روش می توان تراشه مورد نظر را بر روی تراشه های قابل برنامه ریزی پیاده سازی نمود

در این پروژه با استفاده از زبان توصیف سخت افزاری VHDL و تراشه های قابل برنامه ریزی به طراحی و پیاده سازی تراشه 82527 (کنترلر گذرگاه CAN ) اقدام شده است در عین حال اصلاحاتی نیز در عملکرد این تراشه لحاظ شده که کارایی آن را بهبود می بخشد نتایج بدست آمده موفقیت این پروژه را در طراحی ، پیاده سازی و بهبود تراشه با انجام تغییرات پیشنهادی نشان می دهد

1-1- مقدمه

در دو دهه گذشته پیشرفت روز افزون علم الکترونیک تحولات شگرفی را در کار آمدی سطوح فناوری باعث گردیده است به شکلی که این روند رو به افزایش در عرصه های گوناگون از قبیل ارتباطات، پزشکی، اتوماسیون، نظامی و ; کاملا مشهود است

به عنوان نمونه در اتوماسیون صنعتی و روباتیک واحدهای الکترونیکی که بخش مهمی از سیستم بشمار می روند توانسته اند بهره وری سیستم را فزونی بخشند. از مسایل مطرح در این زمینه می توان طراحی و پیاده سازی شبکه های صنعتی را نام برد . از جمله این شبکه ها، (Control Area Network) CAN ، شبکه Profibus و شبکه Ethernet هستند. که هر یک از این شبکه ها در زمینه خاصی کاربرد دارند

در شبکه های فوق و از جمله شبکه کنترل محلی (CAN) نیاز به تراشه های کنترل شبکه است که از نوع تراشه های خاص بوده و انواع متفاوتی از آنها توسط کمپانیهای سازنده به بازار عرضه شده اند. یکی از این محصولات تراشه 82527 اینتل می باشد که مورد توجه طراحان شبکه های کنترل محلی قرار گرفته است

از دیگر ابداعات علم الکترونیک که امروزه کاربرد فراوان دارد طراحی و پیاده سازی مدارهای دیجیتال و پردازنده های با کاربرد خاص بر روی تراشه های قابل برنامه ریزی است. از مزایای مهم این نوع پیاده‌سازی مدارات دیجتال، طراحی مدارهای با قابلیت پیکربندی مجدد بر اساس خواست طراح است

علاوه بر این در صورتی که تهیه یک تراشه با کاربرد خاص بنا به دلایل گوناگون از جمله عدم انتقال تکنولوژی مشکل باشد با داشتن مشخصات کاری آن تراشه به این روش می توان تراشه مورد نظر را بر روی تراشه های قابل برنامه ریزی پیاده سازی نمود

در این پروژه با استفاده از یکی از زبانهای توصیف سخت افزاری و تراشه های قابل برنامه ریزی به طراحی و پیاده سازی تراشه 82527 ( کنترلر گذرگاه CAN ) اقدام شده است. در عین حال اصلاحاتی نیز در عملکرد این تراشه لحاظ شده که کار آیی آنرا بهبود می بخشد. در ادامه این فصل ابتدا به معرفی گذرگاه CAN می پردازیم. پس از آن مروری بر تراشه های قابل برنامه ریزی و در انتها هم مروری بر زبانهای توصیف سخت افزاری خواهیم داشت

در فصل دوم مروری بر برخی از پیاده سازیها در ارتباط با طراحی و اصلاح پردازنده های عمومی و نیز پیاده سازی پردازشگرهای سیگنال دیجیتال خواهیم داشت. در فصل سوم یکی از پر کاربردترین کنترلرهای گذرگاه CAN و پروتکلهای ارتباطی در این شبکه را معرفی خواهیم نمود.در فصل چهارم به معرفی یکی از زبان های توصیف سخت افزار که در این پروژه مورد استفاده قرار گرفته است می پردازیم. در فصل پنجم به پیاده سازی کنترلر معرفی شده می پردازیم. در انتها نتایج حاصل از پیاده سازی را نشان خواهیم داد و به جمع بندی خواهیم پرداخت

1-2- معرفی CAN

شبکه کنترل محلی (Control Area Network) برای کنترل سیم بندی های ساده تا شبکه های پیچیده قابل استفاده بوده و از جمله موارد کاربرد این شبکه را می توان سیستمهای اتوماسیون صنعتی، وسائل و تجهیزات پزشکی، صنایع خودرو، هواپیما، کشتی سازی و ; را نام برد

به عنوان مثال در اتومبیل های پیشرفته مانند مرسدس بنز برای متصل نمودن و در عین حال مدیریت بر واحدهای الکترونیکی بخشهای مختلف از قبیل موتور، درها، نمایشگرها و ; این شبکه استفاده می شود. در صنایع حمل و نقل ریلی مثل قطار و مترو نیز این شبکه برای کنترل اجزا مختلف سیستم مورد استفاده قرار می گیرد

استانداردهای گوناگون با سرعتهای متفاوت که بر اساس قواعد CAN عمل می نمایند وضع گردیده است و هر یک از صنایع استفاده کننده از شبکه کنترل محلی یکی از این استانداردها را بکار می برند استفاده می نمایند

در این شبکه ارتباطات بین بخشهای مختلف به صورت سریال می باشد و اتصال اجزای مختلف این شبکه توسط گذرگاه سریالی که از پروتکلهای استاندارد CAN  پیروی می کند صورت می گیرد

بخشهای مختلف این شبکه عبارتند از

یک کنترلر شبکه، یک میکروکنترلر یا میکروپروسسور و تعداد لازم فرستنده – گیرنده پیام (Transciver) و ایزوله کننده های نوری (Opto cupler)

میکروکنترلر به منظور راه اندازی و فرمان دادن به کنترلر شبکه بکار گرفته می شود. در بعضی از شبکه‌های بزرگ بیشتر از یک کنترلر وجود دارد. شکل های (1-1) تا (1-3) نحوه اتصال اجزا مختلف این شبکه را نشان می دهند

 تراشه های کنترلر زیادی از شرکتهای سازنده نیمه هادی به بازار عرضه شده است. به عنوان نمونه تراشه های 82526 و 82527 از شرکت اینتل تراشه 82200 از کارخانه فیلیپس از جمله تراشه های کنترلر عرضه شده می باشند. کنترلر 82527 در صنعت کاربرد بیشتری دارد زیرا این تراشه از بقیه کاملتر است. از دلایل دیگر کاربرد این تراشه شرکت سازنده آن است، به دلیل اینکه محصولات شرکت اینتل در ایران رایج تر می باشد

کنترلر شبکه توسط گذرگاه سریال (CAN Bus) اطلاعات لازم را از گره های شبکه (فرستنده – گیرنده ها) دریافت نموده و در صورت لزوم در اختیار پردازنده سیستم قرار می دهد. همچنین با توجه به فرامین پردازنده سیستم پیامهائی را به گره های شبکه ارسال می کند

تاریخچه تکامل شبکه کنترل محلی (CAN)

استفاده از شبکه داخلی در وسائط نقلیه توسط شرکت بوش (1983)

تصویب و معرفی قواعد مربوط گذرگاه CAN (1986)

ساخت و ارائه نخستین کنترلر گذرگاه CAN (1987)

تصویب و ارائه نسخه دوم قواعد ارتباطات در گذرگاه CAN توسط شرکت بوش (1991)

معرفی پروتکل (قواعد) لایه های بالائی در شبکه مذکور (1991)

تشکیل و معرفی هیات کاربران CiA (CAN in Automation) (1992)

ارائه قواعد مربوط به لایه کاربردی شبکه توسط CiA(1992)

تولید اولین اتومبیل از کارخانه مرسدس بنز که از CAN استفاده نمود(1992)

تصویب استاندارد ISO 11989 مربوط به CAN (1993)

برگزاری اولین کنفرانس CAN توسط انجمن CiA (1994)

ارائه اصلاحات استاندارد ISO 11898 (1995)

توسعه قواعد ارتباطات در CAN (2000). ‌‌[1] [2] [3] [4] [5]

1-3- مقدمه ای بر تراشه های قابل برنامه ریزی

مدارهای مجتمع با کاربرد خاص ASIC (Application Specific Integrated Ciccuits) به سه دسته تقسیم می شوند

الف – مدارهای کاملا خاص Full Custom  

ب- مدارهای نیمه سفارشی Semi – Custom  

ج- مدارهای قابل برنامه ریزی PLD  و Gate Array  

در مورد اول طرح مدار در حد گیت ها و ترانزیستورها توسط نرم افزارهای شبیه سازی آماده شده و تست می گردد. این مشخصات در اختیار سازنده قرار می گیرد و سازنده این طرح را به صورت‌ ترانزیستوری در آورده و آن را بر روی سطح سیلیکون خام پیاده می نماید

در مورد دسته ب همانند حالت قبل مدار با کمک نرم افزار ویژه طراحی شده و سپس نتیجه طراحی جهت ساخت در اختیار سازنده قرار می گیرد با این تفاوت که این بار مدار بر روی تراشه های نیمه خام گیت ها مثل AND و OR یا مدارهای دیگر بر روی آنها از قبل ایجاد گردیده و فقط اتصالات بین آنها وجود ندارد که اینها اتصالاتی هستند که با توجه به طرح مشتری بر روی تراشه ایجاد می گردند. یک نمونه این مدارها Gate Array می باشد

مدارهای قابل برنامه ریزی آنهائی هستند که بر خلاف دسته اول ساخت آنها در کارخانه سازنده و قسمتهای تکمیلی آن توسط خود مشتری انجام می شود در صورتیکه در مدارهای نیمه خام و قسمت آخر یعنی ایجاد اتصالات توسط سازنده انجام گرفته و تنها قسمت میانی یعنی طراحی اتصالات توسط مشتری قابل انجام است. مدارهای قابل برنامه ریزی شامل انواع PLA ، FPGA و حتی PROM ، EPROM نیز می شوند

تراشه های PGA در دو دهه گذشته محبوبیت زیادی کسب نموده اند. در این تراشه ها هیچ نوع الگوی ارتباطی از قبل تعیین شده ای وجود ندارد و بنابراین طراح آزادی کامل در جهت ایجاد این اتصالات را دارد. بر اساس نوع برنامه ریزی این تراشه ها در دو دسته تقسیم بندی می شوند

الف- نوعی که وارد کردن برنامه در آنها بایستی در کارخانه سازنده انجام گیرد Masked PGA

ب- تراشه های قابل برنامه ریزی در محل

FPGA از لحاظ نوع ساختار ساده ترین و قدیمی‌ترین آنها شامل ماتریسی از‌NAND یا NOR های دو وروی می باشد. در تراشه های دسته (الف) همانند دسته (ب) بخش اول کار یعنی ساخت تراشه یا مرحله ایجاد اتصالات در کارخانه سازنده انجام می شود سپس طراح با توجه به طرح خود ارتباط بین دریچه ها را تعیین نموده و پس از شبیه سازی مدار و اطمینان از عملکرد صحیح آن اطلاعات مربوط به اتصالات مورد نظر را به صورت یک برنامه کامپیوتری تحویل کارخانه سازنده می دهد تا ماسکهای مورد نیز تهیه گشته و بقیه مراحل تا پایان کار و تکمیل ساخت تراشه توسط سازنده انجام پذیرد در دسته (ب) بخش ایجاد اتصالات هم توسط کاربر و با کمک دستگاه برنامه ریزی ویژه در محل کار طراح قابل انجام است و احتیاج به مراجعه به سازنده برای انجام این کار نیست

بایستی توجه داشت که دسته (ب) در ازای داشتن این مزیت این نقطه ضعف را نیز دارد که بخش مهمی از سطح سیلیکون برای ایجاد امکانات برنامه ریزی در محل استفاده شده است. بنابراین در نوع اخیر از درصد کمتری از سطح سیلیکون برای ایجاد اصل مدار استفاده می شود.یکی از نقاط ضعف عمده تراشه‌های  Masked PGA در آن است که اگر اشکالی پس از اتمام کار در تراشه ساخته شده کشف شود در آن صورت تمام مراحل تهیه ماسک و ایجاد اتصالات توسط سازنده بایستی دو مرتبه از ابتدا تکرار گردند این موضوع هزینه جبران اشتباه را خیلی بالا می برد نکته دیگری که در استفاده از این نوع تراشه بایستی در نظر داشت این است که تعداد تراشه مورد نیاز باید انقدر زیاد باشد که جبران هزینه های تولید ماسک و غیره را بنماید. همچنین زمان قابل ملاحظه برای انجام این مراحل را توسط کارخانه سازنده نیز بایستی در نظر داشت

نمونه ای از موارد کاربرد تراشه های FPGA

– رمز گذاری و رمز گشایی داده ها

– پردازنده های محاسباتی

– پردازنده های تصویری و صوتی ( فشرده سازی، بازسازی، فیلتر و ;.)

– کنترلرهای گذرگاه های CAN  ،  PCI و ; [6] [7]

1-4- مروری بر زبان های توصیف سخت افزاری

HDL (Hardware Description Language) روش توسعه یافته‌ای از توصیف رفتار سیستم‌های منطقی به وسیله روابط منطقی است. این زبان ها بسیاری از مشخصه های روابط منطقی و روابط حالت را در درون خود دارند. در این قسمت، بیشتر تمرکز ما بر روی VHDL است

VHDL(VHSIC(Very High Speed Integrated Circuit)Hardware Description Language)

امروزه این زبان به عنوان استاندارد صنعتی MIL SID 454L معرفی شده است و تمامی طرح های ASIC مربوط به وزارت دفاع آمریکا باید طبق این زبان استاندارد نوشته شوند

این زبان به عنوان قسمتی از پروژه VHSIC (مدارهای مجتمع با تکنولوژی مشخصی، تعریف و شبیه سازی نمود. زمانی که یک مدار منطقی بوسیله این زبان تعریف می گردد، می توان ان را به هر پروسه منطقی و یا بر روی ماژول های طراحی شده توسط هر یک از تولید کننده های ابزارهای منطقی انتقال داد. (VHSIC HDL) VHDL یک سیستم منطقی را به صورت ساختار بالا به پایین توصیف می کند

برای بدست آوردن توصیفی از یک سیستم به صورت ساختار بالا به پایین، سیستم را به صورت مجموعه ای از زیر سیستم ها تقسیم می کنیم که بوسیله یک سری رابط به هم متصل می گردند. هر یک از زیر سیستم های بالایی را می توان به توابع و زیر سیستم های کوچکتر تقسیم کرد. این عمل همچنان ادامه می یابد تا به پایین ترین سطح از سیستم دست بیابیم که در این سطح هر یک از زیر سیستم ها را می توان بوسیله گیتها و بخشهای آماده دیگر طراحی نمود

به این ترتیب، بدلیل آنکه هر یک از طبقات این ساختار منطقی به صورت یکتا مشخص شده اند

هر یک از آنها را می توان به تنهایی شبیه سازی نمود و تابع منطقی اجرا شده بوسیله آنها را آزمایش کرده و خطاهای احتمالی را بر طرف نمود. ابتدا صحت عملکرد پایین ترین طبقه این سیستم را آزمایش کرده و با ترکیب زیر سیستم های پایین تر به زیر سیستم های پیچیده تر می رسیم تا جاییکه به طرح سیستم مورد نظر که در بالاترین طبقه این ساختار وجود دارد برسیم

پس از انجام این عمل، به مرحله ترکیب می رسیم که در آن کل طرح را پیاده کرده و سپس برای بدست آوردن پارامترهای زمانی آن، عمل شبیه سازی را انجام می دهیم. [7]

1-5- نرم افزارهای طراحی تراشه های FPGA

از جمله شرکتهای فعال در زمینه نرم افزارهای طراحی تراشه های FPGA می توان از ALTERA نام برد که عرضه کننده مجموعه نرم افزار MAXPlus می باشد. این مجموعه به عنوان ورودی خود توصیف مدار را به زبانهای عمومی VHDL و Verilog HDL و یا زبان اختصاصی ALTERA یعنی AHDL می پذیرد. از بین دیگر فعالان این زمینه می توان از شرکتهای ACTEL ، ATMEL و Xiliدانلود پایان نامه بررسی و شبیه سازی عملکرد کنترلر CAN ، با استفاده از زبان توصیف سخت افزاری VHDL، و پیاده سازی آن بر روی FPGA با word نام برد

2-1- مقدمه

در این فصل مروری بر استفاده از زبان های توصیف سخت افزاری و تراشه های FPGA در طراحی پردازنده ها فیلترها و دیگر مدارات دیجیتالی خواهیم داشت

بسیاری از پردازنده ها، پردازشگرهای با کاربرد خاص، پردازشگرهای کمکی (Coprocessor)، کنترلرهای گذرگاه های مختلف اعم از USB ،PCL و ;. را می توان به صورت بهینه بر روی تراشه های FPGA پیاده سازی نمود. علاوه بر این می توان در صورتی که نیاز باشد اصلاحاتی بر روی آنها انجام داد و مطابق با شرایط لازم طراحی را تغییر داد. به عنوان نمونه میکرو کنترلر مقاوم شده در برابر تشعشع از جمله پردازنده های اصلاح شده است که در بخش اول به آن اشاره خواهیم نمود. البته لازم است به ساختمان پردازنده ای که می خواهیم آن را اصلاح نمائیم آگاهی کامل داشته باشیم

علاوه بر این مدارهای ویژه مانند فیلترهای دیجیتال از قبیل FIR ، IIR ، Wavelet ، فیلترهای غیر خطی، وفقی با استفاده از زبان VHDL و تراشه های FPGA قابل ساخت هستند. اکثر توابعی که در الگوریتم های پردازش سیگنال اعم از صوت و تصویر مانند مبدلهای DCT ، FFT سیستم های تعیین موقعیت، آشکارسازهای لبه تصویر و ; مورد استفاده قرار می گیرند را می توان به این روش طراحی نمود. کنترلرهای وقفه، DMA و انواع کنترلرهای گذرگاه ها نیز به صورت بهینه شده و اصلاح یافته بر روی تراشه های FPGA قابل پیاده سازی هستند

برخی از دانشمندان مترجم هائی تهیه نموده اند که با استفاده از این مترجم ها می توان الگوریتم های پردازش تصویر و صوت را که با استفاده از زبانهای سطح بالا مانند C و یا محیط های شبیه سازی مانند مطلب تهیه گشته اند به زبان VHDL تبدیل نمود. در بخش آخر به معرفی یکی از این مترجم ها خواهیم پرداخت

2-2- میکرو کنترلر مقاوم شده در برابر تشعشع

مقاومت در برابر خطا(Fault – Tolerance ) و قابلیت اعتماد بالا از مشخصات ضروری صنایع نظامی می باشند. مدارات دیجیتال بکار گرفته شده در صنایع هوا فضا تحت تاثیر انواع تشعشعات قرار می‌گیرند. یک روش کاهش خطا به منظور مقاوم شدن در برابر تشعشع استفاده از تکنیک کد همینگ (Hamming) می باشد

یکی از میکرو کنترلرهای دیجیتالی که بیشتر در این صنایع بکار گرفته می شود خانواده میکرو کنترلر 8051 است. این تراشه را که بلوک دیاگرام ساختمان آن در شکل (2-1) نشان داده شده است با استفاده از زبان توصیف سخت افزاری VHDL می توان بوسیله تکنیک کد همینگ نسبت به تشعشع مقاوم نمود

2-3- کانولوشن کننده های (Convolvers) دو بعدی

کانولوشن کننده های دو بعدی در پردازش تصویر به منظور اعمال فیلتر، تشخیص لبه (Edge Detection) ، درون یابی (Interpolation) و واضح نمودن (Sharpening) بسیار موثر هستند به عنوان نونه، عمل یک کانولوشن کننده که لبه های یک تصویر را برای خروجی بر جسته و واضح (Sharpen) می نماید Edge Enhancement نامیده می شود

 2-4- فیلترهای دیجیتال

فیلتر های دیجیتال از پر کاربردترین اجزا در پردازش سیگنال های دیجیتال می باشند. کار یک فیلتر حذف قسمتهای نامطلوب یک سیگنال یا استخراج سیگنال هایی در محدوده فرکانسی خاص می باشد. به عبارت دیگر فیلتر فرکانس های مشخصی از یک سیگنال را انتخاب و سپس حذف و یا تغییر می دهد. این کار به منظور کاهش نویز و یا شکل دادن به طیف سیگنال انجام می گیرد

بیشتر فیلترهای قدیمی در کاربردهای DSP با بکارگیری پردازنده های DSP ویژه پیاده سازی می‌شدند. این پردازنده های DSP قادر به انجام عملیات ضرب و ذخیره اطلاعات با سرعت بالا هستند ولی دارای محدودیت در پهنای باند می باشند. فقط تعداد معینی عملیات قبل از ورود نمونه بعدی توسط این پردازنده ها قابل انجام می باشند که در نتیجه محدود کننده پهنای باند است. پردازنده های DSP به صورت ذاتی ترتیبی می باشند و بنابراین DSP هایی که از یک پردازنده بهره می برند قادر به انجام یک عمل بر روی یک مجموعه داده در هر زمان می باشند. این مسئله باعث محدودیت در فرکانس کلی سیستم می شود. فیلترهای بر پایه FPGA با معماری خطی لوله ای موازی پیاده سازی می شوند که باعث افزایش عملکرد کلی سیستم می گردد. پیاده سازی با FPGA همچنین امکان ارزیابی دقیق در تمام مراحل الگوریتم را امکان پذیر می سازد. موارد ذکر شده عمده ترین تفاوت های بین یک فیلتر بر پایه FPGA با متناظر DSP آن می‌باشد

پیاده سازی فیلترهای دیجیتال با فرکانس نمونه برداری چند مگا هرتز با بکارگیری DSP های استاندارد غالبا دشوار است و گران تمام می شود. امکان بالقوه پردازش موازی و برنامه ریزی مجدد FPGA ها را به یک راه حل ایده آل تبدیل می کند. قابلیت برنامه ریزی مجدد. تغییر در فیلتر در هر زمان را امکان پذیر می سازد [11]

2-4-1- فیلترهای با پاسخ ضربه محدود(FIR)

برای دریافت پروژه اینجا کلیک کنید

دانلود مقاله پردازشگرهای دیجیتال یا (DSP) با word

برای دریافت پروژه اینجا کلیک کنید

 دانلود مقاله پردازشگرهای دیجیتال یا (DSP) با word دارای 15 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد دانلود مقاله پردازشگرهای دیجیتال یا (DSP) با word  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

بخشی از فهرست مطالب پروژه دانلود مقاله پردازشگرهای دیجیتال یا (DSP) با word

مقدمه
پردازشگرهای دیجیتالی درگیرنده های دیجیتالی
گیرنده های سوپرهیتروداین
گیرنده های دیجیتالی
نمونه برداری از تبدیل فوریه
نمایش فوریه از دنباله های محدود درزمان: تبدیل فوریه گسسته
خواص تبدیل فوریه گسسته
نتیجه گیری
مراجع و منابع

بخشی از منابع و مراجع پروژه دانلود مقاله پردازشگرهای دیجیتال یا (DSP) با word

[1]-Discrete – Time Signal Processing
Alan V. oppenheim – Ronald W. Schafer
With John R.Buck
2-سیستمهای مخابراتی کارلسون فصل 7، 8،
3-سیستمهای مخابراتی جرج کندی
4-ناوبری هوایی، هواپیمایی کشوری

مقدمه

بخش مخابرات هوایی از مهمترین و اصلی ترین بخش هاست و زیرسیستم های یک سیستم هوایی را تشکیل می دهد. درحوزه صنعت هوایی و ناوبری، گیرنده ها و فرستنده های رادیویی نقش اساسی را دربخش مخابراتی برعهده دارند بخش مخابرات از سه بخش اساسی گیرنده، فرستنده و کانال مخابراتی تشکیل شده است که دراین مقاله بیشتر به پردازش سیگنالهای گسسته درزمان می پردازیم که در گیرنده ها و فرستنده های مخابراتی نقش اساسی را ایفا می کنند گیرنده های رادیویی نقش اساس درآشکارسازی، آنالیز، شنود و جهت یابی سیگنالهای دریافتی داشته که عمدتاً از نوع سوپرهیتروداین استفاده می شود

علاوه بر سیستم های رادیویی، بسیاری از انواع سیتمها برای ارسال دیتاهای با ارزش، از سیگنال های رادیویی RF استفاده می کنند که دارای رشدی مداوم ، پیوسته و قابل توجه هستند، گیرنده های هوایی برای انواع مختلفی از کاربردها و حوزه ای عملیاتی طراحی و بنا به نیاز، بصورت انفرادی و یا عمدتاً درقالب سیستم بکارگیری می شوند که  عمده اهداف و مقاصد این نوع گیرنده ها برای ارتباطات هوایی یا زمین به هوا و بالعکس انجام می شود عمده تعاریف به کاررفته درمخابرات هوایی یا درکل، مخابرات

رنج دینامیکی : رنج از کمترین تا بیشترین سیگنالهای ورودی برحسب dB، که یک گیرنده می تواند احساس کند بطور مثال اگر یک گیرنده قادر به آشکارسازی ، سیگنالهای بین dB 10 و dB50- باشد در این صورت رنج دینامیکی گیرنده dB 60 خواهد بود

-پهنای باند لحظه ای : پهنای باند گیرند درهر نقطه معلوم از زمان (که اساساً کمتر از پهنای باندکلی سیستم برای هرگیرنده می باشد

-حساسیت یا Sensitivity: کمترین سطح توان سیگنال دریافتی که هر گیرنده قادر به آشکارسازی آن می باشد را گویندکه (برحسب dBm اندازه گیری می شود)

-پهنای باند رادیویی کل : رنج فرکانسی که گیرنده قادر به آشکارسازی آنها می باشد راگویند

-توانایی پردازش چندین سیگنال: میزان قابلیت و توانایی گیرنده درتشخیص و تمیز دادن بین دو سیگنال راداری درفرکانس های متفاوت در درون پهنای باند لحظه‌ای یک گیرنده

برای دریافت پروژه اینجا کلیک کنید

دانلود مقاله رده بندی کالا ها در یک فروشگاه الکترونیکی – یک رهیافت فازی با word

برای دریافت پروژه اینجا کلیک کنید

 دانلود مقاله رده بندی کالا ها در یک فروشگاه الکترونیکی – یک رهیافت فازی با word دارای 21 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد دانلود مقاله رده بندی کالا ها در یک فروشگاه الکترونیکی – یک رهیافت فازی با word  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

بخشی از فهرست مطالب پروژه دانلود مقاله رده بندی کالا ها در یک فروشگاه الکترونیکی – یک رهیافت فازی با word

چکیده

مقدمه

1_ مروری بر کارهای قبلی

2_ سفارشی کردن کالا

2_1_ مفاهیم فازی در ویژگی های محصول

2_2_ کمیت سنج زبانی (Linguistic Quantifier)

2_3_ اپراتور OWA

3_ رتبه بندی محصولات

3_1_ رده بندی از دیدگاه ویژگی های مورد نظر مشتری

3_1_ رده بندی از دیدگاه موتورهای جستجو

4_ رتبه بندی نهایی محصولات

5_ مثال عددی

5_1_ رتبه بندی ماشین ها از دیدگاه مشتری

5_2_ رتبه بندی ماشین ها از دیدگاه مشتری

6_ پیاده سازی روش

6_1_ داده ها

6_2_ مسئله و حل آن

6_3_ بحث و نتیجه گیری

مراجع

چکیده

در مکتوبی که پیش رو دارید، روشی برای طبقه بندی کالاهای موجود در فروشگاه های اینترنتی معرفی میگردد. این طبقه بندی بر اساس سلیقه مشتری و همچنین اطلاعات گرفته شده از دیگر موتور جستجوها پیرامون کالای مورد نظر بنا شده است. سلایق مشتری که به صورت زبانی درباره ی کالاها بیان شده (Linguistically defind) ، یا همان خواص محصول، مستقیما از مشتری دریافت می گردد. از طرف دیگر موتورهای جستجو اطلاعاتی پیرامون کالا و بر اساس نظر دیگر مشتریان جمع آوری می کنند. مجموع سلایق مشتری و اطلاعات موتور جستجوها به عنوان مقیاسی جهت آماده سازی اطلاعات جدید و رتبه بندی کالاها مطابق نیاز مشتری استفاده می شود. میانگین وزن دار شده (Weighted average) محصولات، که از اطلاعات پیشین و سلایق عنوان شده توسط مشتری بدست می آید به ما کمک می کند تا محصولات را در فروشگاه اینترنتی رتبه بندی کنیم

مقدمه

در هر دو نوع فروشگاه کلاسیک و آنلاین، یک مشتری مشخصات مورد نظر خود را هنگام خرید کالا مطرح می کند. همزمان مایل است بداند نظر دیگر مشتریان در ارتباط با کالایی که وی قصد خرید ان را دارد چیست

با این پروسه مشتری خواهد فهمید که انتخابش چه قدر با بهترین کالا فاصله دارد. (فاصله صفر وقتی مشتری بهترین انتخاب را دارد). مشتری انتظار دارد این رده بندی و پیشنهادات از طرف خود سیستم بازار الکترونیکی به وی داده شود. در این راه گرفتن اطلاعات، جهت دادن پیشنهاد، کار نسبتا دشواری است

این دشواری چند برابر می شود وقتی مشتری خواسته ها و سلایق خود را به صورت فازی بیان می کند. سیستم فروش الکترونیک نیاز دارد که در جهت هرچه مشتری مدارتر شدن، این اصطلاحات فازی را نمایش داده و ترکیب کند. یک مشکل دیگر در فروش الکترونیک بیرون کشیدن وزن های پنهان شده درون هر یک از خصوصیاتی است که مشتری بر اساس این وزن های ذهنی، قضاوت و رده بندی نهایی را می طلبد. اعلام این وزن های پنهان، فروش الکترونیکی را هر چه بیشتر بر روی خواست مشتری متمرکز می کند. اما بسیار دشوار است که این وزن ها در فروشگاه های الکترونیکی دریافت و تعریف شوند، زیرا درگیر کردن مشتری با جزئیات از جذابیت خرید خواهد کاست. مطلب بعدی به میزان محبوبیت کالای انتخاب شده بر می گردد. نهایتا سیستم نیاز دراد تمام موارد فوق را با هم ترکیب کرده و رده بندی نهایی را به مشتری اعلام کند

در این گزارش ما با مشکل اول از طریق نمایش خواص کالا که توسط مشتری بیان می شود، به صورت مجموعه های فازی، روبرو می شویم. مسئله دوم با مفاهیم اپراتور OWA (Ordered Weighted Average) و کمیت سنج زبانی مدیریت می شود. اطلاعات سایر مشتریان از طریق اینترنت و با استفاده از موتورهای جستجو انجام می شود، و نهایتا از ترکیب تمام اطلاعات فوق جهت ارائه یک رده بندی مناسب و دادن اطلاعات جدید جانبی راجع به کالای مورد نظر استفاده خواهد شد

در بخش 1، مروری بر کارهای انجام شده در این زمینه خواهیم داشت. در بخش 2، به شرح فواید مجموعه های فازی در نمایش یک کالا و کمیت سنج زبانی (Linguistic quantifier)، همراه با توضیح مختصری در ارتباط با اپراتور OWA می پردازیم. در بخش 3، ما به چگونگی رتبه بندی بر اساس اطلاعات گرفته شده از مشتری و همچنین موتورهای جستجو خواهیم پرداخت. در بخش 4، یک مثال عددی را در ارتباط با پروسه فوق از نظر می گذرانیم. مثالی که بررسی خواهد شد مربوط به کاری است که در مقاله مرجع بر روی داده ها انجام شده است. در بخش 5، پیاده سازی روش های رتبه بندی عنوان شده را بر روی داده های گرفته شده از پایگاه اینترنتی UCI، با تغییراتی که جزئیات آن شرح داده خواهد شد، انجام داده و نتایج حاصله را مورد بحث و بررسی قرار می دهیم

 1_ مروری بر کارهای قبلی

پیش از این نیز یکسری تلاش ها در زمینه خرید بهتر از فروشگاه های اینترنتی انجام شده است. Jango، یک فروشگاه شخصی، و DealTime ، با آدرس www.dealtime.com  از پیشگامان تلاش در جهت در نظر گرفتن نظرات مشتری در هنگام خرید هستند. این آژانس ها ویژگی های مطلوب محصول را جهت توصیف آن از سطح اینترنت جمع آوری می کنند. وقتی مشتری تعیین می کند که کالائی برایش جذابیت دارد، این آژانس ها بهترین مقادیر موجود در ارتباط با آن کالا را که در اینترنت موجود است پیشنهاد می کنند. مشکل تعیین محصول مناسب در بازار وسیع اینترنت رقابت شدید بین فروشگاه های مختلف در بهتر نشاندادن کالاهای خود است. یعنی اگر به صورت کلی به یک کالا نگاه کنیم (بدون در نظر گرفتن خصوصیات جزئی آن) توجه کنیم تبلیغات می تواند تاثیر بسیار زیادی روی چینش پیشنهادات داشته باشد. سطح دیگری از آژانس ها مانند decision guide با آدرس www.ActiveBuyersGuide.com ، به مشتری در تعیین محصول بهتر، بر اساس مشخصاتی که خود مشتری آن ها را انتخاب می کند کمک می کنند. این سایت یک لیست ازکالاهایی را که با خصوصیات خواسته شده از طرف مشتری مطابقت دارند، پیشنهاد می دهد. هرچند در این فروشگاه مشتری به دشواری سطح مطلوب و مورد انتظار خود را از ویژگی های کالا تعریف می کند. در decision guide یک خریدار می تواند مهمترین ویژگی های کالا را با مشخص کردن یک محدوده عددی برای مینیمم و ماکزیمم سطح انتظار خود بیان می کند.این ورودی ها سیستم را قادر می سازند که یک لیست از محصولات را پیشنهاد دهند. ممکن است یک انحراف کوچک از هر یک از مقادیر تعیین شده توسط مشتری باعث پیشنهاد هایی شود که در کل محصول مناسب تری را معرفی می کند. اما از آن جا که مقادیر ورودی از طرف مشتری دقیقا تعریف شده است، این انحراف کوچک رخ نخواهد داد و طبعا مشتری از انتخاب یک سری محصولات که شاید از محصولات پیشنهاد شده مناسب تر باشند محروم خواهد شد

یک فروشگاه دیگر www.amazon.com است که کتاب هایش را همراه با ویژگی های جذاب آن و نیز “ویژگی توضیحی مشتری” پیشنهاد می دهد. البته این سایت دیدگاه های مشتریان را به صورت فازی دریافت نمی کند. مثلا “یک کتاب داستان خوب” یا “یک متن ریاضی با بیان آسان و قابل فهم“؛ “ویژگی توضیحی مشتری” به مشتریان این اجازه را می دهد که یک سری پیشنهادات متنی را بر اساس توافق میان سایر مشتریان دریافت کند. بنابراین، چون اطلاعات حاصل از این پیشنهادات تنها بر اساس رتبه بندی ذهنی سایر مشتریان همین سایت بوده است نمی توان آن را شاخص صحیحی از میزان محبوبیت آن کالا (کتاب) محسوب کرد

در این مقاله یک روش رتبه بندی کالا بر اساس موتور جستجوهای مختلف ارائه می گردد که طی آن محبوبیت کالای مورد نظر، در سطح بسیار وسیعی از جانب مشتریان و در تمام اینترنت، سنجیده می شود

 2_ سفارشی کردن کالا

برای سفارشی کردن یک محصول، سیستم فروش الکترونیکی نیاز دارد با مشتریان تعامل برقرار کرده و آن ها را به طور کامل و از تمام جنبه ها بفهمد. تنها به این وسیله است که یک سایت می تواند به مشتریانش در آماده کردن اطلاعات و در نتیجه پیشنهاد محصوات مطلوب مورد نظر کمک کند. فرم های پیشنهاد باید برآوردن کننده مشخصات شخصی خریدار از محصول، خلاصه نظرات جمعی پیرامون محصول، و احیانا انتقادات آنان است. برای این منظور، سیستم نیاز دارد از پهار جنبه مشتری را درک کند: 1_اصطلاحات فازی مشتری از ویژگی های کالا. 2_گرایش رویهمرفته مشتری درباره یک محصول یا ویژگی های آن. 3_رتبه بندی کلی و ذهنی مشتری از کالاها. 4_میزان محبوبیت کالا نزد سایر مشتریان

 2_1_ مفاهیم فازی در ویژگی های محصول

 

برای دریافت پروژه اینجا کلیک کنید

دانلود پروژه راه‌اندازی موتور BLDC با استفاده از DTC با word

برای دریافت پروژه اینجا کلیک کنید

 دانلود پروژه راه‌اندازی موتور BLDC با استفاده از DTC با word دارای 106 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد دانلود پروژه راه‌اندازی موتور BLDC با استفاده از DTC با word  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

بخشی از فهرست مطالب پروژه دانلود پروژه راه‌اندازی موتور BLDC با استفاده از DTC با word

فصل اول: موتورهای Dc بدون جاروبک(BLDC)
1- تعریف موتور BLDC  
2- مزایا و معایب موتور BLDC  
3-ساختمان موتور BLDC  
3-1-استاتور  
3-1-1-موتور BLDC با تغذیه ولتاژ سینوسی (BLAC)  
3-1-2-موتور BLDC با تغذیه ولتاژ ورودی ذوزنقه‌ای  
3-2-روتور  
3-3-سنسورهای هال  
4- مواد مغناطیس دائم  
5- اصول عملکرد موتور BLDC  
5-1-تبیین مفهوم کموتاسیون در یک موتور کموتاتورDC  
5-2-مقایسه موتور BLDC با موتورهای DC و القایی  
5-3-کموتاسیون در موتورBLDC  
6-کنترل حلقه‌ بسته موتورBLDC  
7-نتیجه‌گیری  
فصل دوم: مدل‌سازی و شبیه‌سازی درایو الکتریکی موتور BLDC سه‌فاز
1- مقدمه  
2- بررسی مدلهای ارائه‌شده برای درایو موتور BLDC   
3- مدلسازی بر مبنای تابع سوئیچینگ  
3-1- ویژگیها  
3-2- تئوری عمومی تابع سوئیچینگ   
3-3- یک مثال: مدلسازی اینورتر VSI سه‌فاز SPWM بر مبنای توابع سوئیچینگ   
4- مدلسازی درایو موتور BLDC بر مبنای تابع سوئیچینگ  
4-1- آنالیز سیستم درایو موتور BLDC   
4-2- مدلسازی و پیاده‌سازی درایو موتور BLDC در محیط Matlab/ Simulink  
5- شبیه‌سازی درایو موتور BLDC  
6-نتیجه‌گیری  
فصل سوم:تعریف زبانC
1- تعریف زبان C  
2- توصیف پایه های LCD  
3- انواع داده ها   
4- متغیر ها  
5- تعریف متغیرها   
6- تعریف ثابتها   
7- PWM چیست ؟  
برنامه IC PWM  
برنامه Main Controler   
نتیجه گیری  
مراجع  

بخشی از منابع و مراجع پروژه دانلود پروژه راه‌اندازی موتور BLDC با استفاده از DTC با word

 [1]. C.C.Chan,” The State of the Art of Electric and Hybrid, Vehicles” Proceedings of the IEEE, vol. 90, NO. 2, February 2002, pp. 245-

[2]. S. Plotkin, D. Santini, A. Vyas, J. Anderson, M. Wang, J. He, and D. Bharathan; “Hydrid Electric Vehicle Technology Assessment: Methodology, Analytical Issues, and Interim Results”, Center for Transportation Research, Energy Systems Division, Argonne National Laboratory, ANL/ESD/02-2, October 2001,

[3]. Jih-Sheng(Janson) Lai, “Electric Vehicles and powr electronics”, Presentation at Universidad Technica Federico Santa Maria Valparaiso, Chili, August 16.2001, Virginia Polytecnic Institute and StateUniversityCenter for Power Electronics Systems

[4]. K. M. Rahman, and M. Ehsani, “Performance Analysis of Electric Motor Drives for Electric and Hybrid Electric Vehicle application”, Power Electronic in transportation. IEEE 1996, pp.49-

[5]. Y. Gao, H. Maghbelli, M. Ehsani and G. Fraxier, “Investigation of Proper Motor Drive Chracteristics for EV and HEV Propulsion Systems”, SAE 2000 World Congress, Paper No. 03FTT

[6]. Z. Rahman. M. Ehsani and K.L. Butler, “An Investigation of Electric Motor Drive Chracteristics for EV and HEV Propulsion”, SAE 2003 Word Congress, Paper No.  2000-01-3066, pp. 1-

[7]. N. Schofield, M. K. Jenkins, “High Performance Brushless Permanent Magnet Traction Drives for Hybrid Electric Vehicles”, Machines and Drives for Hybrid Electric Vehicles(Digest No: 1996/152), IEE Colloquium on 1996, page(s): 4/1-4/

[8]. R.M. Cuenca, L. L. Gaines, and A.D. Vyas; “Evaluation of Electric Vehicle Production and Operation Costs”, Center for Transportation Research, Energy Systems Division, Argonne National Laboratory, ANL/ESD-41, November

[9]. Brendam Conlon,” A Comparison of Induction, Permanent Magnet, and Switched Reluctance Electric Drive Perfomance in Automotiv Traction Applications”, 2001, General motors Corp

[10]. K. Rahman, B. Fahimi, G. Suresh, A. Ragarathnam, M. Ehsani, ” Advantages of Switched Reluctance Motor Applicationsto EV and HEV: Design and Control Issues”, IEEE Transactions on Industry Applications, vol. 36, no. 1, pp 111-121, jan./Feb

[11]. J. F. Gieras, M. Wing; ” Permanent Magnet Motor Technology: Design and Applications”; Second Edition, 2002, Marcel Dekker, Inc

[12]. A. Kusko and S. M. Peeran; “Definition of the Brushless DC Motor,” in Conf. Rec. IEEE-IAS, pp. 20-22,

[13]. T. J. E Miller; Brushless Permanent-Magnet and Reluctance Motor Drives”, Oxford: Clarendon Press,

[14]. B.K. Lee and M. Ehsani; ” Advanced BLDC Motor Drive for Low Cost and High Performance Propulsion System in Electric and Hybrid Vehicles”, IEEE 2001 International Electric Machines and Drives Conference,   2001, Cambridge, MA, June 2001, pp. 246-

[15]. Padmaraja Yadamale; “Brushless DC(BLDC) Motor Fundamentals” , Application Note AN885,2003, Microchip Technology Inc., DS00885A

[16].  B. K. Lee; ” Advanded Low Cost and High Perfomance Brushless DC Motor Drives for Mass Production”, Ph.D. Thesis, December 2001, Dept. of Electrical Engineering, Texas A&M University

[17].  D.C. Hanselman; “Brushless Permanent-Magnet Motor Design”, New York; McGraw-Hill,

 [18]. P. Wood; “Theory of Switching Power Converter”, New York: Van Nostrand-Reinhold,

[19]. P. D. Ziogas, E. P. Wiechmanm, V. R. Stefanvic; “A Computer-Aided Analysis and Design Approach for Static Voltag Source Inverter”, IEEE Trans. Ind. Applicat., Vol. IA-21, no. 5, pp.1234-1241, Sep./ Oct

[20]. E. P. Wiechmanm, P. D. Ziogas, V. R. Stefanovic; “Generalized Functional Model for Three Phase PWM Inverter/Rectifier Converters”, in Proc. IEEE IAS’85, 1985, pp. 984-

[21]. L. Salazar, G. Joos; “PSPICE Simulation of Three-Phase inverters by Means of switching Functions”, IEEE Trans. Power Electron., Vol. 9, no. 1, pp. 35-42,Jan

[22]. P.N.Enjeti, P. D. Ziogas; “Analysis of A Static Power Converter under Unbalance: A Novel Approach”, IEEE Trans. Ind. Electron., Vol. 37, no. 1, pp. 91-93, Feb

[23]. Matlab Manual Version 5.3.1, the Math Works Ine.,

[24]. P. D. Evans, D. Browns;”Simulation of brushless DC drives”, IEEE Proceeding of Electric Power Applications, 1990, Vol. 137, No. 5, pp. 299-

[25].  P.C. K Luck, C. K. Lee; “Efficient modeling for a brushless DC motor drive”, International Conference of Industrial Electronics, Control and Instrumentation, 1994, IECIN ’94, pp. 188-

[26]. P. P. Muresan, A. Forrsi, K. A. Biro; “Mathematical Modeling and control of Brushless DC Drives-Unified Approach”, IEEE Optimization of Electrical and electronic Equipments, 1998, pp. 557-

[27]. F. Bodin, S. Siala; “New refrence frame for brushless DC motor drive”, IEE Seventh International Conference on Power Electronics and Variable Speed Drives, 1998, pp. 554-

[28]. D. Grenier, L. A. Dessaint; “A Park-Like Transformation for the Study and the Control of a Non-Sinusoidal Brushless DC Motor”, Proceedings of the IEEE Indusrial Electronics, Control, and Instrumentation, 1995, IECON 21, pp. 837-

[29]. F. Bonvin, Y. Perriard; , “BLDC motor control in multiple dq axes”, Eighth International Conferece on IEE Power Electronics and Variable Speed Drives, 2000, pp. 500-

[30]. P. L. Chapman, S. D. Sudhoff, C. A. Whitcom; “Multiple refrence frame analysis of non-sinusoidal brushless DC drives”, IEEE Transactions on Energy Conversion, Vol. 14, Issue: 3, Sept. 1999, pp. 440-

[31]. Y. S. Jeon, H. S. Mok, G. H. Choe. D.K. Kim, J.S. Ryu;”A new simulation model of BLDC motor with real back EMF waveform”, The 7th Workshop onComputers in Power Electronics, COMPEL 2000, 16-18 July 2000, pp. 217-

[32]. N. Franceschatti, M. G. Simoes; “A new approach for analysis, modeling and simulation of the IEEE Industrial Electronics Society, 2001. IECON ’01, pp. 1423-

[33]. H.N Phyu, M.A. Jabbar, L. Zhejie, B. Chao; “Modeling and simulation of brushless permanent magnent DC motor in dynamic conditions by time stepping technique”, IEEE International Electric Machines and Drives Conference, 2003. IEMDC’03, pp. 376-

[34]. P. Zhou, W. N. Fu, D. Lin, S. Stanton, Z. J. cendes and Longya Xu; “Numerical Modeling of Electrical Machines and Its Application”, 37th IEEE TAS Annual Meeting, 2002, pp. 1936-

[35].  K. Nakamura, K. Saito, O. Ichinokura; “Dynamic analysis of interior permanent magnet motor based on a magnetic circuit model”, IEEE Transactions on Magnetics, Vol. 39, no. 5, September 2003, pp. 3250-

[36]. Y. ChiaChou, N.A.O. Demerdash; “A study of the effects of machine winding space harmonics and advanced phase current switching on torque and performance quality in brushless DC motors using PSpice modeling”, IEEE International Electric Machines and Drives Conference, 2003. IEMDC’03, Vol.: 2, pp. 326-

[37]. Joon-Hwan Lee, Sung-Chan Ahn, Dong-Seok Hyun; “A BLDCM drive with trapezoidal back EEMF using four-switch three phase inverter”, IEEE Industry Applications Conference, 2000. Vol. 3, pp. 1705-

[38]. B. K. Lee, B. Fahimi, M. Ehsani; “Dynamic Modeling of Brushless DC Motor Drives”, European Conference on Power Electronics and Application(EPE’2001), Graz, Austria

[39]. R. Carlson, M. Lajoie-Mazenc, and C. dos S. Fagundes; “Analysis of torque ripple due to phase commutation in brushless dc machines”, IEEE Trans. Ind. Applicat. Vol. 28, no. 3, pp. 632-638, May/June

***[40]. E. P. Wiechmann, P. D. Ziogas, V. R. Stefanovi;, “Generalized Functional Model for here Phase PWM Inverter/Rectifier Converters”; in Conf. Rec. IEEE-IAS, pp. 984-993,

[41]. B. K. Lee and M. Ehsani; “A simplified functional model for 3-phase voltage-siurce inverter using switching function concept”, in Conf. Rec. IEEE-IECON, pp. 462-467,

[42]. S. P. Natarajan, C. Chellamuthu, B. Karki, C. A. Kumar; “Siimulation and performance evalution of permanent magnet brushless DC motor using saber package”, The 7th Workshop on Computers in Power Electronics, 2000. COMPEL 2000, pp. 235-

– تعریف موتور BLDC

موتور BLDC در مراجع مختلف دارای تعاریف متفاوتی می‌باشد. استاندارد انجمن ملی سازندگان تجهیزات الکتریکی (NEMA)ف موتور BLDC را این‌گونه تعریف می‌نماید

یک موتور بدون جاروبک، ماشین دوار خود سنکرونی است که دارای روتور مغناطیس دائم بوده و از موقعیت‌های مشخصی از شافت دوار روتور، جهت کموتاسیون الکترونیکی استفاده می‌شود. این موتور می‌تواند همراه با درایوهای الکترونیکی مربوطه به‌صورت مجتمع باشد یا این‌که موتور از درایو مربوطه جدا باشد

KUSKO نیز تعریف زیر را بیان می‌کند[12]

یک موتور که دارای سیم‌پیچی استاتور بوده و یک موتورم مغناطیس دائم برجسته از جنس آهن نرم دارد. سیم‌پیچ‌های استاتور از یک منبع تغذیه اولیه DC و به توسط یک ماتریس از سوئیچ‌های حالت جامد تغذیه گشته و عمل کنترل با استفاده اط سنسورهای وضعیت و با منطقی مشخص انجام می‌شود.در غیاب یک ریگلاتور، سرعت موتور متناسب با ولتاژ DC اولیه می‌باشد

موتور BLDC اساساً دارای ساختاری مشابه یک مغناطیس دوار همراه با یک مجموعه از هادی‌های حامل جریان می‌باشد. از این‌نظر، مشابه با یک موتور کموتاتور DC معکوس شده نیز می‌باشد که مغناهطیس می‌چرخد اما هادی‌های جریان، ایستان باقی می‌مانند. در هر دو حالت، برای ثابت‌ماندن جهت گشتاور در یک جهت، جریان در هادی‌ها می‌بایست در هر زمان که یک قطب مغناطیسی از روبروی آن عبور می‌کند، پلاریته‌اش نیز معکوس شود. در یک موتور کموتاتور DC، معکوس شدن پلاریته با کموتاتور و جاروبک‌ها انجام می‌شود. چون کموتاتور نسبت به روتور ثابت می‌باشد، لحظات سوئیچ زنی به‌طور اتوماتیکن با تغییر پلاریته میدان مغناطیسی هادی‌ها سنکرون می‌گردد. در یک موتور BLDCف معکوس شدن پلاریته با کلید‌زنی ادوات الکترونیک قدرت انجام می‌گردد. پروسه‌ کموتاسیون در هر دو نوع ماشین، شبیه به هم بوده و سنکرون با وضعیت روتور می‌باشد و لذا معادلات دینامیکی مربوطه و مشخصه‌های سرعت-گشتاور آن‌ها یکسان می‌باشند.[1113]

2- مزایا و معایب موتور BLDC

موتور‌های BLDC مغناطیس دائم که در صنایع اتومبیل‌سازی و هوافضا، مورد استفاده قرار‌می‌گیرند شامل مزایای ذیل می‌باشند[14,16]

·نویز پایین: به‌دلیل عدم نیاز به هیچ‌گونه جاروبک مکانیکی یا حلقه‌های لغزان در موتور‌های مغناطیس دائم BLDC، تمام نویز‌های مکانیکی به استثنای نویزهای مربوط به بلبرینگ‌ها، کوپلینگ‌ها و بار حذف می‌شوند
·بهره بالا: برای موتور‌های BLDC ثابت شده است که بالاترین بهره را در بین موتور‌های موجود دارند. بهره بالاتر موتور‌های BLDC در اصل بواسطه وجود میدان مغناطیس دائم موتور می‌باشد که میدانی پیوسته و ثابت بوده و مصرف توان الکتریکی ندارد. خصوصیت مهم دیگر مغناطیس‌ها، طول عمر درازشان می‌باشد که تحت شرایط کاری مناسب، ضریب مغناطیس‌زدایی پایینی دارند
·کاهش ملزومات تحریک: همان‌طور که اشاره گردید مغناطیس‌های دائم یک میدان مغناطیسی ثابت ایجاد می‌کنند که بهره را با کاهش نیاز به ایجاد یک میدان تحریک الکترومغناطیسی که در دیگر انواع موتورها لازم است، افزایش می‌دهند
·نگه‌داری کم و طول عمر بیشتر: چون هیچ جاروبک مکانیکی وجود ندارد و اثری از حلقه‌های لغزش نمی‌باشد، طول عمر موتور وابسته به طول عمر عایقی بلبرینگ‌ها و عمر مغناطیسی می‌باشد
·سهولت در کنترل: در موتور BLDC، گشتاور خروجی مستقیماً متناسب با جریان موتور است که در نتیجه عمل کنترل به‌راحتی انجام می‌گردد. لذا بسیاری از سازندگان نیمه‌هادی‌ها، برای موتور‌های BLDC، ادوات نیمه هادی قدرت با مدارات درایو گیت در بسته‌های 6تایی مجتمع طراحی می‌کنند تا نیازهای اینورتر درایو موتور را برآورده سازند و لذا قیمت کلی سیستم و درایو کاهش می‌یابد
·ساختار مجتمع و متراکم: کاربردهای هوافضا و اتومبیل، نیاز به تجهیزات با وزن کمتر و حجم کوچکتری دارند تا بهره سوخت مصرفی را افزایش دهند و لذا نیاز به ذخیره‌سازی انرژی کمتری داشته‌باشند. اخیراً مواد مغناطیسی با دانسیته بالا نظیر سارماریوم-کبالت و نئودیمیم- آهن- بور (Nd Fe B) به بازار مصرف عرضه‌شده‌اند که دانسیته انرژی ماشین‌ را برای این کاربردها افزایش می‌دهند

با وجود مزایای ذکر شده، این موتور‌ها دارای مشخصات و معایب ذاتی می‌باشند که عبارتند‌از

·قیمت مواد مغناطیسی: قیمت‌های مواد مغناطیسی دائم با دانسیته انرژی بالاتر، مانع از استفاده از آن‌ها در کاربرهایی که قیمت و هزینه استفاده از این موارد بیشتر از ایجاد مزایای مذکور می‌باشد، می‌شود. به‌عنوان مثال سرامیک‌ها، کمترین قیمت را دارند و از طرفی دارای کمترین دانسیته انرژی نیز می‌باشند. مغناطیس دائم از نوع (Nd Fe B) بالاترین دانسیته انرژی را دارد که در حدود سه‌برابر قیمت سرامیک می‌باشد. مکنت ساماریوم-کبالت، دانسیته انرژی قابل مقایسه‌ای با مکنت (Nd Fe B) داشته ولی در حدود 6 برابر سرامیک، قیمت دارد
·احتمال مغناطیس زدایی: در استفاده از مواد مغناطیس دائم باید مراقبت زیادی در برابر مقادیر بالای نیروهای مغناطیس‌زدا و یا درجه حرارت‌ها بالا که می‌توانند اثر مغناطیسی مکنت را ازبین ببرندف به‌عمل آید

علاوه‌بر موارد فوق می‌توان به خطرات ناشی از وقوع خطاهای اتصال کوتاه در مبدل برای سیم‌بندی‌های استاتور، ناحیه توان ثابت محدود و قابلت کم عملکرد در سرعت‌های بالا نیز اشاره نمود

3-ساختمان موتور BLDC

موتور‌های BLDC یک نوع خاص از موتورهای سنکرون می‌باشند. این مطلب به آن معناست که میدان مغناطیسی ایجاد شده توسط استاتور و میدان مغناطیسی ایجاد شده توسط روتور با فرکانسی واحد دوران می‌کنند. موتورهای BLDC فاقد پارامتری بنام لغزش، مشابه آن‌چه در موتورهای القایی مشاهده می‌شود هستند. موتورهای BLDC در ساختارهای تکفاز، دوفاز، سهفاز، پنج فاز و همچنین با تعداد فاز بالاتر وجود دارند. متناظر با هر یک از انواع مذکور، استاتور نیز به همان تعداد دارای سیم‌پیچ است. اما نوعی که فراگیر بوده و بیشتر مورد استفاده قرار‌می‌گیرد، نوع سه فاز می‌باشد. در ادامه به شرح اجزای اساسی تشکیل دهنده یک موتور BLDC پرداخته می‌شود

3-1-استاتور

استاتور موتور BLDC شامل ورقه‌های فولادی دسته‌بندی شده‌ای است که به‌همراه سیم‌پیچ‌ها در اسلاتهایی جاسازی شده‌اند که دو سر آن‌ها در راستای محیط داخلی موتور قراردارند. شکل 1 استاتور یک موتور BLDC را نمایش می‌دهد

 استاتور موتور BLDC شبیه به استاتور موتور القایی می‌باشد اما الگوی سیم‌بندی متفاوتی دارد. اغلب موتورهای BLDC دارای سه سیم‌پیچ استاتور می باشند که به‌صورت ستاره به یکدیگر متصل شده‌اند. هر سیم‌پیچ منشکل از تعدادی زیاد حلقه بوده که متوالیا و با ارایشی خاص به یکدیگر متصل هستند. هر سیم‌پیچ در داخل استاتور به نحوی توزیع ‌شده‌است تا تشکیل یک قطب را بدهد. دو نوع آرایش سیم‌بندی برای استاتور وجود دارد که در نتیجه آن موتور‌های BLDC ذوزنقه‌ایی و موتور‌های BLDC سینوسی مطرح می‌شوند. این تفاوت از نحوه اتصال کویلهای استاتور ظاهر می‌گردد که در نتیجه دو نوع مختلف ولتاژ ضد محرکه الکترومغناطیسی (Back-EMF) پدید می‌آید

3-1-1-موتور BLDC با تغذیه ولتاژ سینوسی (BLAC)

در نوع تغذیه سینوسی که در واقع همان ماشین سنکرون مغناطیس دائم (PMSM) می‌باشد برای ایجاد شار سینوسی علاوه بر این‌که توزیع سیم‌پیچی فازهای استاتور سینوسی است، ولتاژ اعمالی به فازهای استاتور نیز سینوسی می‌باشد. لذا دانستن مقدار لحظه‌ای موقعیت روتور الزامی بوده و در نتیجه باید از اینکودرهای موقعیت دقیق استفاده نمود. مقدار گشتاور لحظه‌ایی در این نوع موتور بسیار صاف بوده و ریپل گشتاور ناچیز می باشد. با این وجود ایجاد سیم‌بندی سینوسی با پیچیدگی بیشتری همراه بوده و تعداد اتصالات داخلی بیشتری را می‌طلبد. در مجموع، ساخت استاتور با اتصال سینوسی هزینه بیشتری را تحمیل می‌نماید. این موتور بنام موتور BLAC نیز شناخته می‌شود[11]. شکل 2 شکل موج ولتاژ ضدمحرکه یک موتور BLAC را نمایش می‌دهد

 3-1-2-موتور BLDC با تغذیه ولتاژ ورودی ذوزنقه‌ای

در این نوع موتور توزیع سیم‌پیچی فازهای استاتور به‌صورت ذوزنقه‌ایی بوده و ولتاژ اعمالی به فازها نیز به‌صورت ذوزنقه‌ای یا مربعی می‌باشد. در این ساختار، نیازی به دانستن مقدار لحظه‌ایی موقعیت روتور نبوده و می‌توان از سهس سنسور وضعیت از نوع اثر هال که در فواصل 120 درجه نسبت به یکدیگر قرار‌گرفته‌اند استفاده نمود. محاسبات و عمل کنترلی در این نوع موتور نسبت به نوع سینوسی بسیار ساده‌تر می‌باشند. در چگالی شار و اندازه‌ یکسان برای هر دو نوع موتور ذوزنقه‌ایی و سینوسی، نوع ذوزنقه‌ایی بدلیل توزیع سیم‌بندی ذوزنقه‌ایی، بمقدار 15% گشتاور بیشتری تولید می‌کند.اما از طرف دیگر به‌دلیل همپوشانی کموتاسیون فازها، ریپل گشتاور در این نوع موتور بیشتر از نوع سینوسی است[11]. شکل 3 شکل موج ولتاژ ضد محرکه یک موتور BLDC ذوزنقه‌ای را نمایش می‌دهد

 موتورهای BLDC در مقادیر ولتاژ تغذیه مختلفی ساخته‌ می‌شوند. برای کاربردهای رباتیک و سیستم‌های Servo سطح ولتاژ 48 ولت و یا کمتر انتخاب می‌شود. در حالی‌که موتورهای با تغذیه 100 ولت به بالا در اتوماسیون و کاربردهای تراکشن به‌کار می‌روند

3-2-روتور

روتور یک موتور BLDC از مواد مغناطیسی ساخته می‌شود و تعداد زوج قطب‌ها از یک تا 8 عدد تغییر می‌نماید. برحسب چگالی میدان مغناطیسی مورد نیاز در رتورف مواد مغناطیسی مناسب برای ساخت روتور استفاده می‌گردد. مگنت‌های فریت معمولاً برای ساخت مغناطیس دائم به‌کار می‌رود. فریت‌ها ارزان‌ قیمت هستند ولی چگالی فلوی پایینی دارند. آلیاژهای مواد مغناطیس دائم کمیاب مانند نئودیم (Nd)، ساماریوم-کبالت(SmCo) موادی با چگالی بالا بوده که گران قیمت می‌باشند. در بخش 2-4 درباره مواد مغناطیسی و خصوصیات آن‌ها به تفصیل بحث می‌گردد. رتور موتورهای مغناطیس دائم معمولاً در پیکر‌بندی‌های ذیل ساخته می‌شوند

1- نوع مغناطیس داخلی(Interior-Magnet Rotor)

2- نوع مغناطیس سطحی یا خارجی(Surface-Magnet Rotor)

3-  Inset-Magnet Rotor

در نوع Interiorف به‌دلیل آن‌که در سطح روور، ناحیه مغناطیس دائم کوچکتر از ناحیه قطب می‌باشد چگالی شار فاصله هوایی در قیمت مدار باز کوچکتر از مقدار آن در ئداخل مگنت می‌باشد. اندوکتانس محور d نیز از اندوکتانس محور q کمتر می‌باشد. در این پیکربندیف مگنت بسیار خوب محافظت شده و برای کاربردهای سرعت بالا بسیار کاربرد داردو. موتور نوع Surface Magnet دارای ساختار ساده‌تری بوده و مگنت نیز چندان محافظت نمی‌شود. کاربرد این موتور برای کابردهای سرعت متوسط تا بالا می‌باشد. بیشترین کاربردشان موتورهای درایوهای دیسک ثابت کامپیوترها می‌باشد. این کاربرد نیاز به یک سرعت یکنواخت و ثابت داشته و اینرسی بالای روتور مغناطیس سطحی یک مزیت در بدست‌آوردن این اهداف می‌باشد. برای سایر موارد به مرجع [11] مراجعه شود. شکل 4 نمای چند نمونه از موتورهای مغناطیس دائم را نمایش می‌دهد

 3-3-سنسورهای هال

برخلاف موتور DC جاروبک‌دار، کموتاسیون یک موتور BLDC به‌صورت الکترنیکی صورت می‌گیرد. برای چرخش موتور، سیم‌پیچ‌های استاتور باید با ترتیبی مناسب تحریک گردند. برای تحریک سیم‌پیچ‌های استاتور، دانستن وضعیت روتور بسیار اهمیت دارد. وضعیت روتور توسط سنسور هال می‌باشند. هر زمان که قطب‌های مغناطیسی روتور از نزدیکی یک سنسور هال عبور می‌نمایند یک سیگنال High یا Low که مبین عبور قطب N یا S از نزدیکی سنسور می‌باشد، ایجاد می‌نمایند. براساس ترکیب سیگنال‌های ایجاد شده توسط این سه سنسورف ترتیب دقیق کموتاسیون قابل تعیین است. شکل 5 برش محوری یک موتور BLDC را نشان می‌دهد. جاسازی سنسورهای هال بر روی استاتور فرآیند ساده‌ای نمی‌باشد زیرا غیر هم محور بودن سنسورها نسبت به مکنت‌های روتور نمنجر به ایجاد خطا در تعیین وضعی روتور می‌شود. برای سهولت عمل جاسازی سنسورهای هال بر روی استاتور از سه عدد مگنت کوچک بر روی روتور استفاده می‌شود که این مگنت‌ها نزدیک به سنسورهای هال قرار دارند. براساس مکان فیزیکی، سنسورهای هال دو نوع آرایش وجود دارد. سنسورهای هال می‌توانند در مکان‌های 60 درجه یا 120 درجه نسبت به یکدیگر قرار گیرند. ترتیب کموتاسین باید بر اساس نوع آرایش به‌کار رفته تعیین گردد.[15]

 4- مواد مغناطیس دائم

امروزه، انواع محتلفی از مواد مغناطیس دائم وجود دارند که مهم‌ترین آن‌ها عبارت‌اند از» آلنیکو، فریت(سرامیک)، ساماریوم- کبالت و نئودیوم- آهن- بودف در کاربردها با عمل‌کرد بالا مرسوم می‌باشند زیرا نسبت به ساماریوم-کبالت ارزان‌تر می‌باشند. هر نوع از این مگنت‌ها، خواص مغناطیسی متفوامتی داشته که منجر به ایجاد محدودیت‌ها و سطوح مختلف عملکردی در موتورهای BLDC می‌شود. در ادامه فقط خواص عمومس مگنت‌ها بررسی می‌گردد[17]

مواد مغناطیس دائم (PM) موادی هستند که دارای حلقه هیسترزیس پهن می‌باشند. بنابراین منحنی عملکرئ PMها در ربع‌های اول و دوم از حلقه هیسترزیس، در شکل 6 نمایش داده‌شده‌است. برای راحتی کار محور شدت میدان مغناطیس با  مقیاس شده است که در نتیجه، هر دو محور دارای واحد تسلا می‌باشند. حلقه هیسترزیس نمایش‌داده‌شده در شکل 6 با اعمال یک میدان مغناطیسی بسیار قوی و سپس قطع آن بر یک ماده خام مناسب بوجود می‌آید. این عملیات سبب می‌گردد که مطابق منحنی، خاصیت مغناطیسی در ماده القا گردد(Relax) و یا این‌که ماده به حالت نخستین بازگردد(Recoil)

 اگر دو انتهای مگنت توسط یک ماده با پرمانس بی‌نهایت به یکدیگر متصل گردند، گفته می‌شود که قابلت مغناطیسی در ماده ماندگار شده و آخرین نقطه‌کار H=0 خواهد بود. چگالی شار بجا مانده در مگنت در این نقطه به‌نام پسماند شناخته شده و با اندیس Br نمایش داده می شود. Br، حداکثر چگالی شاری است که مگنت به تنهایی قادر به ایجاد آن می‌باشد. از طرف  دیگر اگر نفوذ‌پذیری مغناطیسی اطراف مگنت، صفر باشد، هیچ شاری از مگنت خارج نخواهد شد وآخرین نقطه بدست آمده، B=0 خواهد بود. در این مقطهف دامنه چگالی میدان در امتداد مگنت معادل با HC است. برای پرمانس‌های بین صفر و بی‌نهایتف نقاط کار، در ربع دوم مابین Br و HC قرار دارند. مقدار مطلق شیب خط بار از نقطه کار تا مبدا که با ضریب نرمالیزه شده‌است به‌عنوان ضریب پرمانس (PC) شناخته می‌شود. لذا کارکرد در نقطه Br دارای یک مقدار PC بی‌نهایت می‌باشد. کار در نقطه HC دارای PC صفر بوده و کار در دقیقا بین این دو نقطه، دارای PC=1 می‌باشد

مواد مغناطیس دائم سخت نظیر ساماریوم- کبالت و (Ne Fe B) دارای منحنی‌های مغناطیس زدایی نظیر شکل 7 می‌باشند. شیب این خطوط برابر با  بوده که ، ضریب نفوذ مغناطیسی نسبی این مواد است. مقدار نمونه  برابر با 10 تا 11 می‌باشد. در دماهای بالاتر، منحنی مغناطیسی میل به نزدیکی به مبدا را دارند. با وقوع این عمل مقدار شار مگنت افت نموده و لذا خواص مغناطیسی کاهش می‌یابد. این رفتار کاهشی، برگشت‌پذیر بوده و با کاهش مجدد دما منحنی مغناطیس‌زدایی به منحنی بالاتر برمی‌گردد[17]

 علاوه‌بر این‌که با افزایش دما منحنی به سمت مبدا میل می‌کند، نقطه زانویی عملکرد مغناطیس زدایی ممکن است از ربع سوم به‌طرف ربع دوم حرکت نماید. این انحراف از خط راست سبب می‌گردد که دانسیته شار سریع تر یه سمت HC میل نماید. عملکرد در ناحیه زانویی سبب می‌گردد که برگشت‌پذیری مغناطیسی به‌تدریج ازبین برود زیرا خاصیت مغناطیسی مگنت در امتداد خط پایین‌تری به حالت اولیه باز‌می‌گردد(خط‌ نقطه‌چین در شکل 7). با وقوع این اتفاق Br و HC موثر کاهش یافته و لذا عملکرد مغناطیسی کاهش می‌یابد. لذا باید اطمینان حاصل نمود که مگنت‌ها به دور از نقطه HC و در مقدار نسبتا بالایی از PC کار می‌کنند[17]

5- اصول عملکرد موتور BLDC

در این بخش بدلیل تشابه ذاتی عملکرد و ساختار موتور BLDC با تغذیه ورودی با موتور‌های سنکرون از نوع مغناطیس دائم از بیان آن صرف‌نظر نموده و بحث فقط معطوف به موتور BLDC با تغذیه ورودی ذوزنقه‌ای می‌گردد[11]. لذا منظور از موتور BLDC در این بخش تغذیه با ولتاژ ورودی ذوزنقه‌ای می‌باشد. عمل کموتاسیون برای موتور BLDC و کنترل آن بسیار حیاتی و اساسی می‌باشد. در ادامه بحث، اساس کموتاسیون موج مربعی موتور BLDC با نشان دادن کموتاسیون در یک موتور کموتاتورDC بسادگی بیان می‌شود

5-1-تبیین مفهوم کموتاسیون در یک موتور کموتاتورDC

شکل 8 یک موتور کموتاتورDC را نمایش می‌دهد که در یک میدان مغناطیسی ثابت دوران می‌کند. میدان مغناطیسی توسط یک مغناطیس دائم تولید می‌گردد. این میدان دو قطبی بوده، زیرا فقط یک قطبN و یک قطب S در هر دور کامل وجود دارد. تنها محور یک کویل در شکل 8 نمایش داده‌شده است که با محور مرجع زاویه می‌سازد

 بین مقادیر   و  ، شار نشتی از مقدار ماکزیمم منفی تا مقدار ماکزیمم افزایش می‌یابد. در این حالت تمام شار به‌طور یکنواخت از کویل عبور می‌نماید. بدلیل وجود دو فاصله هوایی بین دو قطبN و S مگنت، شار نشتی حدود چند درجه کمتر از مقدار وضعیت ، بدون ایجاد هیچ تغییری، ثابت باقی می‌ماند. این افزایش سطح تحت شار نشتی در شکل 9 نشان داده‌شده‌است[11,17]

 شکل موج نیروی ضد محرکه با استفاده از قانون فارادی، از شکل موج شار نشتی قابل دست‌یابی است. لذا  برابر با نرخ تغییرات یا شیب شکل موج شار نشتی و به‌صورت ذیل می‌باشد

که در آن،  سرعت زاویه‌ای روتور می‌باشد. اگر N سرعت برحسب دور بر دقیقه باشد درنتیجه خواهیم‌داشت . نرخ تغییرات شار نشتی بر حسب وضعیت روتور از شکل موج‌های نشان‌داده‌شده در شکل 9 قابل محاسبه می‌باشد

کموتاتور، جریان منبع DC(ia) را به کویل با همان پلاریته نیروی ضد محرکه (ea) کلیدزنی می‌نماید، به‌طوری‌که توان تغذیه شده به‌صورت eaia خواهد بود. شکل موج جریان ia در شکل 9 نشان داده‌شده‌است. اگر سرعت زاویه‌ای ثابت نگه‌داشته‌شود و از تلفات نیز صرفنظر گردد، توان الکتریکی ورودی به توان مکانیکی تبدیل خواهد شد که  گشتاور تولید‌شده یک کویل می‌باشد و به‌دلیل هماهنگی پلاریته‌های جریان و نیروی ضد‌محرکه، همواره در یک جهت ثابت باقی خواهد ماند. با این وجود، گشتاور تولید‌شده صفر است. علت این پدیده همان‌طور که قبلاً نیز بیان شد به وجود فاصله هوایی بین قطب‌های مگنت برمی‌گردد. شکل 10، شماتیک عملکرد یک موتورکموتاتورDC  سبیه به شکل 8 را با این تفاوت که سه کویل در فواصل برابر  نسبت به یکدیگر روی موتور قرار گرفته‌اند

  کویل‌ها در یک نقطه به یکدیگر متصل بوده و سر دیگر آن‌ها به سه نقطه کموتاتور که بازه هر کدام   است قرار دارند. شکل موج‌های گشتاور تولید‌شده توسط کویل‌های 2 و 3 مشابه با شکل موج   بوده اما نسبت به   دارای اختلاف فاز  و می‌باشند. گشتاور کل تولید شده یعنی  همواره ثابت می‌باشدو موتور DC با سه قطعه کموتاتور، تقریبا دارای عملکردی مشابه موتور BLDC سه فاز می‌باشد. جاروبک‌ها و کموتاتورها وظیفه‌ای همانند مدار PWM شکل 11 دارند که از ادوات کلی‌زنی الکترونیک قدرت استفاده می‌کند و شکل موج‌های ولتاژ شکل 9 نیز به موتور BLDC اعمال می‌گردند

 بسیاری از مشخصه‌های این دو موتور نظیر شکل موج‌های جریان فازها، مشابه یکدیگر می باشند. هر دو موتور در هر لحظه از زمان دقیقا دو فاز در حال هدایت می‌باشند. کموتاتور، ثابت ماندن جریان منبع DC را تضمین می‌نماید. اهمیت شکل موج جریان DC ثابت در آنست که نیازی به استفاده از فیلترهای خازنی متصل به تغذیه DC نبوده و عملیات فیلتراسیون کاهش خواهد یافت

5-2-مقایسه موتور BLDC با موتورهای DC و القایی

 

برای دریافت پروژه اینجا کلیک کنید

دانلود مقاله مدارات کنترل از راه دور با word

برای دریافت پروژه اینجا کلیک کنید

 دانلود مقاله مدارات کنترل از راه دور با word دارای 34 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد دانلود مقاله مدارات کنترل از راه دور با word  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

بخشی از فهرست مطالب پروژه دانلود مقاله مدارات کنترل از راه دور با word

مقدمه

مشخصات فنی مدار

طرز کار مدار

ساخت مدار

کد بندی فرستنده و گیرنده

راه اندازی مدار

برنامه ریزی دستگاه

چند نکته

منابع

مقدمه

 مدارات کنترل از راه دور در بین علاقمندان الکترونیک طرفداران بسیاری دارد. زیرا امروزه دامنه کاربرد آنها بسیار وسیع گشته و در همه جا قابل استفاده می باشند. برای موارد حساس لازم است سیستم کنترل از راه دور مورد استفاده دارای کد بندی بوده و در مدار آن از Encoder-Decoder استفاده شده باشد تا احتمال خطا در کارکرد به صفر برسد. در این نوع از سیستم های کنترل از راه دور فرستنده کد خاصی ارسال میکند که تنها توسط گیرنده ای که همان کد به آن داده شده است، قابل دریافت است و بنابراین احتمال خطای ناشی از تأثیر نویز و پارازیت های اطراف و سیگنال های سایر دستگاه های مشابه بر گیرنده به حداقل می رسد

با توجه به فرکانس های مختلف کار دستگاه ها و حالت های مختلف کد بندی (دو به توان ده حالت)، احتمال تأثیر گذاری دستگاه های افراد مختلف بر روی یکدیگر بسیار کم می باشد . البته چنین سیستم هایی امروزه در حد زیادی تولید می شوند و در موارد مختلف (بخصوص بعنوان کنترل کننده دزدگیر و قفل مرکزی اتومبیلها) مورد استفاده قرار می گیرند . هر یک از سیستم های مزبور بسته به نوع کاربرد، دارای عملکرد متفاوت در خروجی گیرنده می باشند. مثلا بعضی بصورت لحظه ای کار می کنند یعنی با فشار دادن کلید فرستنده و با رها کردن کلید فرستنده خروجی گیرنده غیر فعال خواهد شد همچنین برخی دیگر بصورت فلیپ فلاپ عمل کرده و با هر بار ارسال سیگنال توسط فرستنده خروجی گیرنده به طور متناوب و یکی در میان به حالت روشن و خاموش می رود. بعضی دیگر نیز بصورت تایم دار عمل کرده و خروجی گیرنده پس از دریافت سیگنال فرستنده برای مدتی فعال شده و پس از آن به حالت خاموش در می آید

مزیت سیستم معرفی شده در این مقاله آن است که کلیه حالت های توضیح داده شده همگی در آن جمع بوده و دستگاه می تواند در هر یک از حالت های گفته شده مورد استفاده قرار گیرد و علاوه بر آن یک حالت دیگر نیز برای کارکرد مدار وجود دارد که در مورد آن توضیح داده خواهد شد

مشخصات فنی مدار

مدار دارای دو کانال مستقل بوده و هر یک از کانال ها توسط یک کلید جداگانه روی فرستنده کنترل می شود. هر یک از کانال ها می توانند در یکی از حالات زیر عمل کنند: 1- لحظه ای          2- فلیپ فلاپ               3- تایم دار          4- ضربدری

در مورد سه حالت اول در مقدمه توضیح داده شد. در حالت چهارم یعنی حالت ضربدری دو کانال دستگاه بطور مستقل عمل نکرده و بهم وابسته می باشند و با فشار دادن کلید هر کانال در فرستنده کانال مزبور در گیرنده فعال شده و کانال دیگر به حالت قطع می رود. انتخاب حالت های مختلف توسط نصب چند جامپر (سیم رابط کوتاه) در مدار انجام می شود. در جدول 1 مشخصات فنی مدار فرستنده و گیرنده آمده است

ولتاژ کار فرستنده

12 ولت

باند امواج ارسالی فرستنده

UHF

جریان مصرفی فرستنده

5-15 میلی آمپر

ولتاژ کار گیرنده

12 ولت

جریان مصرفی گیرنده

20-100 میلی آمپر

جدول 1- مشخصات فنی مدار فرستنده و گیرنده کنترل از راه دور

طرز کار مدار

در شکل  1 نقشه شماتیک مدار فرستنده دیده می شود . آی سی PT2262 بعنوان مولد سیگنال و رمز کننده عمل می نماید. بسته به آنکه S1 وصل شود یا S2 ، فرکانس متفاوتی در خروجی ظاهر می گردد که دارای کد خاصی نیر می باشد. این کد بستگی به وضعیت پایه های 1 تا 8 و 10 و 11 آی سی مزبور دارد . هر یک از پایه های 1 و 2و 3 و 4 و 5و 6و 7و 8و 10و 11 می توانند در حالت 0 (اتصال به منفی) و یا (اتصال به مثبت) و یا به حالت آزاد باشند . بسته به ترتیب اتصال پایه های مزبور، کد حاصل بصورت یک کد ده رقمی ظاهر می گردد. استفاده از D1 و D2 سبب شده است که در حالت عادی باتری از مدار خارج بوده و فقط با فشردن یکی از کلیدها جریان در مدار برقرار گردد. یک عدد LED برای نشان دادن ارسال سیگنال در مدار تعبیه شده که بصورت سری با آن قرار گرفته است. مقاومت بین پایه های 15 و 16 آی سی مربوط به اسیلاتور داخلی آن می باشد. سیگنال ارسالی توسط آی سی در پایه 17 آن ظاهر شده و توسط قسمت مدولاتور (شامل یک اسیلاتور متشکل از ترانزیستور و چند قطعه جانبی آن ) روی امواج UHF مدوله شده و توسط آنتن در فضا انتشار می یابد . توسط خازن تریمر موجود موجود در قسمت مدولاتور میتوان فرکانس امواج ارسالی را تغییر داد. جامپرهای JS1 و JS2 که در شکل دیده می شوند در واقع در مدار وجود نداشته و در واقع داخل S1 و S2 قرار دارند. زیرا در داخل این دو کلید پایه ها دو بدو بهم متصلند و از اتصال درونی کلیدها در مدار چاپی بعنوان جامپر استفاده شده است

ساخت مدار

 

برای دریافت پروژه اینجا کلیک کنید